引 言
开关电源的效率与功耗已成为设计师关注的焦点,而多模式控制已经成为电源控制芯片中高效率低功耗设计的主流趋势。
所谓多模式控制就是在开关电源的工作中根据负载情况的不同采用不同的控制策略,以降低其功耗,提高效率。它是针对常用开关电源在轻载和待机条件下效率低的特点提出的,其设计思想可描述为:在重载下采用PWM模式,以发挥其重载下效率高的优点;在轻载下采取PFM 模式,通过降低开关频率来降低功耗;而在极轻载条件下(待机模式下)则采取BURST模式来降低功耗。
系统构成
整个系统的构成如图1所示。系统中包括一个欠压锁定电路,用于保证电路在合适的电压范围内正常工作;一个带隙基准电压源和一个专为数字模块供电的电压源(记为VDD_D),分别为芯片提供基准偏置和数字部分的电源。具体构成时此两模块包含在UVLO模块内。两个电压调整器(REGULATOR)分别产生一个5V和一个4.3V 的稳定电压,其中5V稳定电压源输出记为REG,用于在重载时为控制器供电(轻载时关断);4.3 V 稳定电压源输出记为VDD_AD,用于轻载时的供电。当然,必要时还可以利用带隙基准产生更多不同的电压以满足复杂控制模式的需要。
图1电源系统框图
此外,本设计中还设置了一个REF-OK模块来判断上电后电源系统是否已进入正常工作状态。
欠压锁定电路的设计
欠压锁定电路又称UVLO,见图2.图中VDD为芯片外部供电电源,设计值为12V。欠压锁定电路的窗口设置为7~9.5V,即上电后电压上升到大于9.5V时芯片开始正常工作,而当供电电压小于7V时芯片停止工作。考虑到欠压锁定电路在电源控制芯片中的重要性,设计给出了两种实现方案,并对两种控制策略的性能进行了分析与比较。
图2 两个比较器实现的欠压锁定电路
图2给出第一种欠压锁定电路的原理图,称为U-VLO1,这是用两个比较器实现的欠压锁定电路。VDD是外部供电电压源,K1、K2 是小于1的常数,且K1》K2,VREF为1.25 V带隙基准电压,LATCH是由两个反相器组成的锁存器。图中标的UVLO_out代表欠压锁定信号,状态设置是UVLO_out=0时有效。
电路的工作原理可简述如下:12 V供电电压可在VDD比较低时建立一个PTAT电流源,然后利用其建立起带隙基准电压源;当VDD由0上升时,带隙基准电压r首先建立,此时两个比较器的输出为低电位,P1导通,输出为高电位;当K1VDD大于 r时,COMP1输出跳变,N1管导通,锁存器锁存上一个信号,UVLO为高电位;当K2VDD大于VREF 时,N2导通,则UVLO-out为低电位,使能其他模块;随着VDD减小,K2VDD首先小于VREF,N2关断,则锁存器锁存信号,UVLO-out保持;当 VDD减小到K1 VDD小于VREF时COMP1跳变,P1导通,N1关断,则输出UVLO-out为高电位,关断整个控制芯片。
表1 UVLO的状态对应表
此外,为最大限度减小功耗,设计中将带隙基准电压、数字电源和欠压锁定电路集成在一起。具体电路图见图3。
图3 欠压锁定和数字电源的具体电路图
图中利用带隙基准电压加上四个二极管连接的三极管产生一个大于4V 的电压,然后经过M0S管产生一个大约2.65V左右的电压。这个电压在基准电压建立后就产生了,主要用于为欠压锁定电路的数字部分供电,并且担任了为整个系统的数字电路供电的任务。
4.3V稳定电压源
4.3V的稳定电压源(VDD-AD)用来在轻载时为系统电,供始终保持工作,在BURST模式下由它为模拟模块供电。
图4 4.3 V 的稳定电压源
是带隙基准电压,通过一个运放、一个达林顿结构的晶体管和一个电阻分压网络组成负反馈环路来产生4.3V的稳定电压。其稳压机理如下:当负载增大时,VDD-AD电压下降,此时A点电压下降,使运放的输出上升,则Q1、Q2基极升高,REG电压重新升高,获得稳定;反之亦然。VDD-AD是检测模块的供电电压,设计驱动能力为2 mA.芯片负载减小时,关断REG,减小了芯片的静态功耗,这样既能保证芯片的驱动能力,又同时降低了芯片的静态功耗。
模式控制逻辑
模式控制逻辑用以保证在进行模式选择时,电源系统正常工作。当FB电压底于0.5V时,该控制逻辑通过内部电流滞回比较器自动选择进入待机模式。RUN信号(其为高电位有效)用来关断绿色多模式反激变换器中的其它控制模块,以实现低待机功耗。
图5 模式控制逻辑
结 论
提出了一种开关电源控制芯片供电系统的设计方案,可在不同负载条件下为芯片提供合适的供电方案,保证其高效低功耗工作。设置的UVLO模块保证了芯片在电源波动过程中的正常工作。芯片测试的结果很好地验证了设计思想。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |