压电陶瓷驱动电源在微位移动平台中的地位较为重要,这主要是因为微位移的发生主要依靠压电陶瓷驱动电源,此外,由于其响应速度快、体积小等特点,近年来在其他领域的应用也开始逐渐增多。本文就将针对基于ARM的压电陶瓷驱动电源2D/A电路设计进行讲解。
压电陶瓷驱动电源中ARM控制器主要提供两方面功能:作为通信设备提供通用的输入/输出接口。作为控制器运行相关控制算法以及产生控制信号或波形实现PZT的静态定位操作。针对如上需求,本设计采用LPC2131作为主控制器,LPC2131是Philips公司生产的基于支持实时仿真和跟踪的32位ARM7TDMI-S-CPU的微控制器,主频可达到60MHz。LPC2131内部具有8KB片内静态RAM和32KB嵌入的高速FLASH存储器。具有两个通用UART接口、I2C接口和一个SPI接口。由于LPC2131具有较高的数据处理能力和丰富的接口资源使其能够作为压电驱动电源的控制芯片。
2D/A电路设计
图1
由于压电驱动电源要求输出电压范围为0~100V,分辨率达到毫伏级,所以D/A的分辨率需达到亚毫伏级。本设计采用AD5781作为D/A器件。AD5781是一款SPI接口的18位高精度转换器,输出电压范围-10~10V,提供±0.5LSBINL,±0.5LSBDNL和7.5nV/Hz噪声频谱密度。另外,AD5781还具有极低的温漂(0.05ppm/℃)特性。因此,该D/A转换器芯片特别适合于精密模拟数据的获取与控制。D/A电路设计如图1所示。
在硬件电路设计中,由于AD5781采用的精密架构,要求强制检测缓冲其电压基准输入,确保达到规定的线性度。因此选择用于缓冲基准输入的放大器应具有低噪声、低温漂和低输入偏置电流特性。这里选用AD8676,AD8676是一款超精密、36V、2.8nV/Hz双通道运算放大器,具有0.6μV/℃低失调漂移和2nA输入偏置电流,因而能为AD5781提供精密电压基准。通过下拉电阻将AD5781的CLR和LDAC引脚电平拉低,用于设置AD5781为DAC二进制寄存器编码格式和配置输出在SYNC的上升沿更新。
在ARM端的软件设计中,除正确配置AD5781的相关寄存器外,还应正确配置SPI的时钟相位、时钟极性和通信模式。正确的SPI接口时序配置图如图2所示。
图2 主模式下的SPI通信时序图
本文主要针对基于ARM的压电陶瓷驱动电源2D/A电路设计进行了讲解。帮助读者进一步理解这种特殊电源在设计中的独特之处与作用,对压电陶瓷驱动电源有兴趣的朋友不妨花上几分钟来阅读本文,相信会有意想不到的收获。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |