想要提高电路的PFC其实并不是一件非常困难的事情。通过各类器件来实现效率的提升是一个非常行之有效的方法。本文将为大家介绍二极管在提升PFC效率上有哪些重要作用,并进行有针对性的比较。感兴趣的朋友快来看一看吧。
二极管比较
二极管又称晶体二极管,简称二极管(diode);它只往一个方向传送电流的电子零件。它是一种具有1个零件号接合的2个端子的器件,具有按照外加电压的方向,使电流流动或不流动的性质。晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降为随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8-2.0V,绿色发光二极管的压降为3.0-3.2V,正常发光时的额定电流约为20mA.二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。
硅Si肖特基二极管常作为小于300V的中低压应用,因为在漏电流与正向导通压降保持在容许的等级之内时,它们显示出很低的开关损耗与正的温度系数。然而这类二极管对于高压应用来说并不理想,因为高压应用中漏电流与正向导通压降要高的多。比较起来,SiC肖特基二极管在高压领域更有吸引力。因为碳化硅的击穿电场是硅的10倍。此外SiC的宽带隙容许较高的工作温度。另外,在开关状态转换过程中,SiC肖特基二极管没有反向恢复电流,这是因为它没有额外的少数载流子。虽然寄生结电容确实产生了位移电流但可以忽略不计。因此在CCMPFC应用中,由于SiC肖特基二极管优越的反向回缩特性,可不依赖于元器件的温度与正向传导特性,使得SiC肖特基二极管与硅Si二极管相比能够提供更大的功效。
图1
图1所示为SiC肖特基二极管和硅二极管的反向恢复特性对比。在这个例子中,Fairchild公司的速复硅二极管按照tRR和VF区分为三种类型,隐形二极管具有快速反向回缩特性,超高速元件拥有最低的VF值。通过25℃时的反向恢复测试,硅二极管中出现了大量的反向恢复电流,而SiC肖特基二极管仅仅在电容中出现由p-n结反向偏压形成的位移电流。SiC肖特基和硅二极管的V-I特性曲线均为温度的涵数。正向电流较低时,温度升高时VF减小。在这个区域内,可观察到肖特基势垒两端的电流呈指数特性。当正向电流增加时,二极管的体电阻决定其正向偏置特性,并且肖特基二极管的VF随温度上升而增大。SiC肖特基二极管的带隙越大,本征载流子浓度和运行结温就越高。就原理而论,硅二极管的最高结温为150℃[8],而SiC肖特基二极管有可能达到600℃。运行温度的增加允许其重量、体积、成本和热量管理系统复杂性的全面减小。
另外,由于SiC肖特基二极管具有正温度系数,因此与硅二极管相比,它们更适于在较高的电压下并联运行。SiC肖特基二极管的低QRR不仅减少二极管的开关器件损耗,而且能减少MOSFET的导通损耗,使CCMPFC达到很高的能效。就算SiC二极管中的正向电流比硅二极管大,上述情况仍然成立。在MOSFET的导通瞬间,SiC肖特基二极管优越的温度特性可以降低漏电流峰值。并且设计人员可以使用较小的MOSFET来减低成本。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |