微软公司宣布不再支持你正在使用的 IE浏览器,这会严重影响浏览网页,请使用微软最新的Edge浏览器
厂商专区
产品/技术
应用分类

是谁发明了氮化镓材料?氮化镓下一步的发展方向?

2018-12-28 10:01 来源:互联网 编辑:Janet

每一种材料对科学贡献和工业生产起到推动的作用,氮化镓材料在它的发明和应用对当下科技进步和工业生产有非常重要的意义。无论是半导体材料,合金材料,溅射靶材,以及贵金属材料对二十一世纪的工业发展有着重要的推动作用。

GaN材料是1928年由Johason等人合成的一种Ⅲ-Ⅴ族化合物半导体材料,在大气压力下,GaN晶体一般呈六方纤锌矿结构,它在一个元胞中有4个原子,原子体积大约为GaAs的1/2;其化学性质稳定,常温下不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解;在HCl或H2下高温中呈现不稳定特性,而在N2下最为稳定。GaN材料具有良好的电学特性,宽带隙(3.39eV)、高击穿电压(3×106V/cm)、高电子迁移率(室温1000cm2/V·s)、高异质结面电荷密度(1×1013cm-2)等,因而被认为是研究短波长光电子器件以及高温高频大功率器件的最优选材料,相对于硅、砷化镓、锗甚至碳化硅器件,GaN器件可以在更高频率、更高功率、更高温度的情况下工作。另外,氮化镓器件可以在1~110GHz范围的高频波段应用,这覆盖了移动通信、无线网络、点到点和点到多点微波通信、雷达应用等波段。

近年来,以GaN为代表的Ⅲ族氮化物因在光电子领域和微波器件方面的应用前景而受到广泛的关注。作为一种具有独特光电属性的半导体材料,GaN的应用可以分为两个部分:凭借GaN半导体材料在高温高频、大功率工作条件下的出色性能可取代部分硅和其它化合物半导体材料;凭借GaN半导体材料宽禁带、激发蓝光的独特性质开发新的光电应用产品。目前GaN光电器件和电子器件在光学存储、激光打印、高亮度LED以及无线基站等应用领域具有明显的竞争优势,其中高亮度LED、蓝光激光器和功率晶体管是当前器件制造领域最为感兴趣和关注的。

国外在氮化镓体单晶材料研究方面起步较早,现在美国、日本和欧洲在氮化镓体单晶材料研究方面都取得了一定的成果,都出现了可以生产氮化镓体单晶材料的公司,其中以美国、日本的研究水平最高。

美国有很多大学、研究机构和公司都开展了氮化镓体单晶制备技术的研究,一直处于领先地位,先后有TDI、Kyma、ATMI、Cree、CPI等公司成功生产出氮化镓单晶衬底。Kyma公司现在已经可以出售1英寸、2英寸、3英寸氮化镓单晶衬底,且已研制出4英寸氮化镓单晶衬底。

日本在氮化镓衬底方面研究水平也很高,其中住友电工(SEI)和日立电线(HitachiCable)已经开始批量生产氮化镓衬底,日亚(Nichia)、Matsushita、索尼(Sony)、东芝(Toshiba)等也开展了相关研究。日立电线的氮化镓衬底,直径达2英寸,衬底上位错密度都达到1×106cm-2水平。

欧洲氮化镓体单晶的研究主要有波兰的Top-GaN和法国的Lumilog两家公司。TopGaN生产GaN材料采用HVPE工艺,位错密度1×107cm-2,厚度0.1~2mm,面积大于400mm2。综上,国外的氮化镓体单晶衬底研究已经取得了很大进展,部分公司已经实现了氮化镓体单晶衬底的商品化,技术趋于成熟,下一步的发展方向是大尺寸、高完整性、低缺陷密度、自支撑衬底材料。

氮化镓材料有自己的优点和缺点,在技术日益成熟的情况下,氮化镓材料将会发挥更重要的作用!

声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。

相关阅读

微信关注
技术专题 更多>>
研发工程师的工具箱
智慧生活 创新未来

头条推荐

电子行业原创技术内容推荐
客服热线
服务时间:周一至周五9:00-18:00
微信关注
获取一手干货分享
免费技术研讨会
editor@netbroad.com
400-003-2006