微软公司宣布不再支持你正在使用的 IE浏览器,这会严重影响浏览网页,请使用微软最新的Edge浏览器
厂商专区
产品/技术
应用分类

宽禁带生态系统:快速开关和颠覆性的仿真环境

2020-07-17 12:30 来源:安森美半导体 编辑:电源网

宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。

安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。

我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化,而不局限于优化元器件级性能指标,例如RDS(on)。 此外,设计人员可以放心地模拟数据表中未涵盖的工作条件,例如开关应用的变化温度、总线电压、负载电流和输入门极电阻。

为满足这些需求,模型必须是基于物理规律的、直观的、可预测的,最重要的是精确的。

在IC行业中,追溯到几十年前,采用SPICE模型的支持CAD设计的环境对于IC设计人员准确预测电路性能至关重要。 通过首次正确设计缩短生产周期。 迄今为止,由于缺乏可靠的SPICE模型,电力电子CAD环境远远落后于IC行业。 电力电子器件模型基于简单的子电路和复杂的非物理行为模型。仿真最终不可靠.

宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。 安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。 我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化,而不局限于优化元器件级性能指标,例如RDS(on)。 此外,设计人员可以放心地模拟数据表中未涵盖的工作条件,例如开关应用的变化温度、总线电压、负载电流和输入门极电阻。 为满足这些需求,模型必须是基于物理规律的、直观的、可预测的,最重要的是精确的。 在IC行业中,追溯到几十年前,采用SPICE模型的支持CAD设计的环境对于IC设计人员准确预测电路性能至关重要。 通过首次正确设计缩短生产周期。 迄今为止,由于缺乏可靠的SPICE模型,电力电子CAD环境远远落后于IC行业。 电力电子器件模型基于简单的子电路和复杂的非物理行为模型。仿真最终不可靠 图1 简单的子电路过于基础简单,不足以充分利用所有器件性能。 在图1中,我们显示了一个CRSS图,将典型的简单模型(蓝色)与更先进的物理模型(绿色)和测量数据(红色)进行了比较。 显然,您可以看到简单模型无法捕获非线性电容效应,最终导致不准确的动态开关仿真。 众所周知,更准确、更复杂的行为模型会导致收敛问题。 此外,此类模型通常以专有的仿真器行为语言(例如MAST™)编写,因此无法跨多个仿真器平台。 通常,电力电子模型既不是基于工艺技术和布局的,也不具有芯片平面布局的可扩展性。 我们以物理可扩展模型开发了一个适用于整个技术平台的模型。 这就是说,它不是包含经验拟合参数的单个模型的库,最终曲线适合所有产品。只需输入给定产品的芯片平面布局参数,通过芯片扩展,我们就可以使技术迅速发展。 在下一级水平,模型中基于物理学的工艺依赖性使我们能够预测新的虚拟技术变化带来的影响。 显然,早期设计有助于从应用角度带动技术要求,并加快产品上市时间。 一方面,工艺和器件设计工程师使用限定的元器件仿真,也称为TCAD。 另一方面,应用和系统级设计人员使用基于SPICE的仿真环境。 基于工艺参数的spice模型有助于这两方面的融合。 现在,我们介绍一下碳化硅功率MOSFET模型的部分特性。 图2 图3 图2显示了典型的碳化硅MOSFET横截面,图3显示了子电路模型的简化版本。 现在介绍该模型的一些元素。 首先,我们谈谈关键通道区域。 在这里,我们使用著名的伯克利BSIM 3v3模型。 我们都尽可能地不做重复工作。 在这种情况下,我们尝试建模MOSFET通道,该通道非常适合用BSIM模型进行。 该模型是基于物理的,通过亚阈值、弱反演和强反演来准确捕获转换。 此外,它具有出色的速度和收敛性,可以广泛用于多个仿真平台。 接下来,我们需要覆盖由EPI区域的多晶硅重叠形成的门极至漏极临界电容CGD。 该电容本质上是高度非线性的金属氧化物半导体(MOS)电容器。 该电容器的耗尽区由掺杂剖面、P阱dpw之间的距离以及外延层的厚度等工艺参数复杂的依赖性控制。SPICE行为方法实施一种基于物理的模型,并将所有这些影响考虑进去 图4 如图4所示,从横截面开始,我们想介绍芯片平面图可扩展性背后的一些概念和结构。灰色区域是有源区。 蓝色无源区与裸芯边缘(die edges)、门极焊盘和门极通道(gate runners)相关。 基于物理几何的衍生确定了无源区和有源区之间的分布,这是实现可扩展性所需的。 我们非常关注在有源和无源区之间的边界区域中形成的寄生电容。 一旦开始忽略布局中的寄生电容,你什么时候才会停止这种错误呢? 所有被忽略的电容最终累积起来成为一个麻烦。 在这种情况下,就无法实现扩展。 而我们的理念是不忽略任何电容器。 碳化硅MOSFET支持非常快的dV / dt,大约每纳秒50至100伏,而dI / dts大约每纳秒3至6安培。器件固有的门极电阻很重要,可以用来抗电磁干扰(EMI)。 图4右边的设计具有较少的门极通道,因此RG较高, 很好地限制了振铃。 图4左边的设计有许多门极通道,因此RG较低。 左边的设计适用于快速开关,但每个区域的RDSon也较高,因为门极通道会在有源区侵蚀掉 图5 现在,我们要谈谈模型验证。 我们首先在左侧的图5中显示输出电流-电压特性。该模型准确预测整个偏置范围,包括高门极处的漂移区和漏极偏差。右图中的精确导通仿真突出了模型的连续性,这对于强固的收敛性能很重要。 除了线性以外,我们经常查看对数刻度,以发现隐藏的不准确和不连续。 图6 在图6中,我们显示了在宽温度范围内的当前电压、RDSon和阈值电压的结果。 SiC MOSFET器件具有稳定的温度性能,因此非常有吸引力。宽温度范围内的高精度建模使设计人员可以充分利用这种特性 图7 前面我们介绍了对复杂器件电容的物理建模。 图7显示了结果。在左侧,CRSS(或CGD)仿真跟踪数据在2个数量级以上的多次变化,仅在对数刻度上可见。 图8 开关结果具有精确建模的固有电容和器件布局寄生效应,如图8所示,无需额外调整模型。 这种水平的保真度使应用设计人员有信心精确地仿真器件电路的相互影响,例如dV / dt、dI / dt、开关损耗和EMI。 门极驱动器和电源环路的相互作用可以被更进一步地研究和优化。 对我们来说,满足客户各种不同的仿真平台要求非常重要。 因此,SPICE方法至关重要。 SPICE不局限于某个专用平台或系统,我们仅使用行业标准仿真软件中的最小公分母结构,从而避免依赖于仿真器的专有方案。 安森美半导体提供一系列先进的宽禁带器件和仿真环境。 完整的产品阵容形成一个生态系统,使客户能够充分利用新的、令人兴奋的宽禁带应用和系统。

图1

简单的子电路过于基础简单,不足以充分利用所有器件性能。 在图1中,我们显示了一个CRSS图,将典型的简单模型(蓝色)与更先进的物理模型(绿色)和测量数据(红色)进行了比较。 显然,您可以看到简单模型无法捕获非线性电容效应,最终导致不准确的动态开关仿真。

众所周知,更准确、更复杂的行为模型会导致收敛问题。 此外,此类模型通常以专有的仿真器行为语言(例如MAST™)编写,因此无法跨多个仿真器平台。

通常,电力电子模型既不是基于工艺技术和布局的,也不具有芯片平面布局的可扩展性。

我们以物理可扩展模型开发了一个适用于整个技术平台的模型。 这就是说,它不是包含经验拟合参数的单个模型的库,最终曲线适合所有产品。只需输入给定产品的芯片平面布局参数,通过芯片扩展,我们就可以使技术迅速发展。

在下一级水平,模型中基于物理学的工艺依赖性使我们能够预测新的虚拟技术变化带来的影响。 显然,早期设计有助于从应用角度带动技术要求,并加快产品上市时间。 一方面,工艺和器件设计工程师使用限定的元器件仿真,也称为TCAD。 另一方面,应用和系统级设计人员使用基于SPICE的仿真环境。 基于工艺参数的spice模型有助于这两方面的融合。

现在,我们介绍一下碳化硅功率MOSFET模型的部分特性。        

宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。 安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。 我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化,而不局限于优化元器件级性能指标,例如RDS(on)。 此外,设计人员可以放心地模拟数据表中未涵盖的工作条件,例如开关应用的变化温度、总线电压、负载电流和输入门极电阻。 为满足这些需求,模型必须是基于物理规律的、直观的、可预测的,最重要的是精确的。 在IC行业中,追溯到几十年前,采用SPICE模型的支持CAD设计的环境对于IC设计人员准确预测电路性能至关重要。 通过首次正确设计缩短生产周期。 迄今为止,由于缺乏可靠的SPICE模型,电力电子CAD环境远远落后于IC行业。 电力电子器件模型基于简单的子电路和复杂的非物理行为模型。仿真最终不可靠 图1 简单的子电路过于基础简单,不足以充分利用所有器件性能。 在图1中,我们显示了一个CRSS图,将典型的简单模型(蓝色)与更先进的物理模型(绿色)和测量数据(红色)进行了比较。 显然,您可以看到简单模型无法捕获非线性电容效应,最终导致不准确的动态开关仿真。 众所周知,更准确、更复杂的行为模型会导致收敛问题。 此外,此类模型通常以专有的仿真器行为语言(例如MAST™)编写,因此无法跨多个仿真器平台。 通常,电力电子模型既不是基于工艺技术和布局的,也不具有芯片平面布局的可扩展性。 我们以物理可扩展模型开发了一个适用于整个技术平台的模型。 这就是说,它不是包含经验拟合参数的单个模型的库,最终曲线适合所有产品。只需输入给定产品的芯片平面布局参数,通过芯片扩展,我们就可以使技术迅速发展。 在下一级水平,模型中基于物理学的工艺依赖性使我们能够预测新的虚拟技术变化带来的影响。 显然,早期设计有助于从应用角度带动技术要求,并加快产品上市时间。 一方面,工艺和器件设计工程师使用限定的元器件仿真,也称为TCAD。 另一方面,应用和系统级设计人员使用基于SPICE的仿真环境。 基于工艺参数的spice模型有助于这两方面的融合。 现在,我们介绍一下碳化硅功率MOSFET模型的部分特性。 图2 图3 图2显示了典型的碳化硅MOSFET横截面,图3显示了子电路模型的简化版本。 现在介绍该模型的一些元素。 首先,我们谈谈关键通道区域。 在这里,我们使用著名的伯克利BSIM 3v3模型。 我们都尽可能地不做重复工作。 在这种情况下,我们尝试建模MOSFET通道,该通道非常适合用BSIM模型进行。 该模型是基于物理的,通过亚阈值、弱反演和强反演来准确捕获转换。 此外,它具有出色的速度和收敛性,可以广泛用于多个仿真平台。 接下来,我们需要覆盖由EPI区域的多晶硅重叠形成的门极至漏极临界电容CGD。 该电容本质上是高度非线性的金属氧化物半导体(MOS)电容器。 该电容器的耗尽区由掺杂剖面、P阱dpw之间的距离以及外延层的厚度等工艺参数复杂的依赖性控制。SPICE行为方法实施一种基于物理的模型,并将所有这些影响考虑进去 图4 如图4所示,从横截面开始,我们想介绍芯片平面图可扩展性背后的一些概念和结构。灰色区域是有源区。 蓝色无源区与裸芯边缘(die edges)、门极焊盘和门极通道(gate runners)相关。 基于物理几何的衍生确定了无源区和有源区之间的分布,这是实现可扩展性所需的。 我们非常关注在有源和无源区之间的边界区域中形成的寄生电容。 一旦开始忽略布局中的寄生电容,你什么时候才会停止这种错误呢? 所有被忽略的电容最终累积起来成为一个麻烦。 在这种情况下,就无法实现扩展。 而我们的理念是不忽略任何电容器。 碳化硅MOSFET支持非常快的dV / dt,大约每纳秒50至100伏,而dI / dts大约每纳秒3至6安培。器件固有的门极电阻很重要,可以用来抗电磁干扰(EMI)。 图4右边的设计具有较少的门极通道,因此RG较高, 很好地限制了振铃。 图4左边的设计有许多门极通道,因此RG较低。 左边的设计适用于快速开关,但每个区域的RDSon也较高,因为门极通道会在有源区侵蚀掉 图5 现在,我们要谈谈模型验证。 我们首先在左侧的图5中显示输出电流-电压特性。该模型准确预测整个偏置范围,包括高门极处的漂移区和漏极偏差。右图中的精确导通仿真突出了模型的连续性,这对于强固的收敛性能很重要。 除了线性以外,我们经常查看对数刻度,以发现隐藏的不准确和不连续。 图6 在图6中,我们显示了在宽温度范围内的当前电压、RDSon和阈值电压的结果。 SiC MOSFET器件具有稳定的温度性能,因此非常有吸引力。宽温度范围内的高精度建模使设计人员可以充分利用这种特性 图7 前面我们介绍了对复杂器件电容的物理建模。 图7显示了结果。在左侧,CRSS(或CGD)仿真跟踪数据在2个数量级以上的多次变化,仅在对数刻度上可见。 图8 开关结果具有精确建模的固有电容和器件布局寄生效应,如图8所示,无需额外调整模型。 这种水平的保真度使应用设计人员有信心精确地仿真器件电路的相互影响,例如dV / dt、dI / dt、开关损耗和EMI。 门极驱动器和电源环路的相互作用可以被更进一步地研究和优化。 对我们来说,满足客户各种不同的仿真平台要求非常重要。 因此,SPICE方法至关重要。 SPICE不局限于某个专用平台或系统,我们仅使用行业标准仿真软件中的最小公分母结构,从而避免依赖于仿真器的专有方案。 安森美半导体提供一系列先进的宽禁带器件和仿真环境。 完整的产品阵容形成一个生态系统,使客户能够充分利用新的、令人兴奋的宽禁带应用和系统。

图2       

宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。 安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。 我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化,而不局限于优化元器件级性能指标,例如RDS(on)。 此外,设计人员可以放心地模拟数据表中未涵盖的工作条件,例如开关应用的变化温度、总线电压、负载电流和输入门极电阻。 为满足这些需求,模型必须是基于物理规律的、直观的、可预测的,最重要的是精确的。 在IC行业中,追溯到几十年前,采用SPICE模型的支持CAD设计的环境对于IC设计人员准确预测电路性能至关重要。 通过首次正确设计缩短生产周期。 迄今为止,由于缺乏可靠的SPICE模型,电力电子CAD环境远远落后于IC行业。 电力电子器件模型基于简单的子电路和复杂的非物理行为模型。仿真最终不可靠 图1 简单的子电路过于基础简单,不足以充分利用所有器件性能。 在图1中,我们显示了一个CRSS图,将典型的简单模型(蓝色)与更先进的物理模型(绿色)和测量数据(红色)进行了比较。 显然,您可以看到简单模型无法捕获非线性电容效应,最终导致不准确的动态开关仿真。 众所周知,更准确、更复杂的行为模型会导致收敛问题。 此外,此类模型通常以专有的仿真器行为语言(例如MAST™)编写,因此无法跨多个仿真器平台。 通常,电力电子模型既不是基于工艺技术和布局的,也不具有芯片平面布局的可扩展性。 我们以物理可扩展模型开发了一个适用于整个技术平台的模型。 这就是说,它不是包含经验拟合参数的单个模型的库,最终曲线适合所有产品。只需输入给定产品的芯片平面布局参数,通过芯片扩展,我们就可以使技术迅速发展。 在下一级水平,模型中基于物理学的工艺依赖性使我们能够预测新的虚拟技术变化带来的影响。 显然,早期设计有助于从应用角度带动技术要求,并加快产品上市时间。 一方面,工艺和器件设计工程师使用限定的元器件仿真,也称为TCAD。 另一方面,应用和系统级设计人员使用基于SPICE的仿真环境。 基于工艺参数的spice模型有助于这两方面的融合。 现在,我们介绍一下碳化硅功率MOSFET模型的部分特性。 图2 图3 图2显示了典型的碳化硅MOSFET横截面,图3显示了子电路模型的简化版本。 现在介绍该模型的一些元素。 首先,我们谈谈关键通道区域。 在这里,我们使用著名的伯克利BSIM 3v3模型。 我们都尽可能地不做重复工作。 在这种情况下,我们尝试建模MOSFET通道,该通道非常适合用BSIM模型进行。 该模型是基于物理的,通过亚阈值、弱反演和强反演来准确捕获转换。 此外,它具有出色的速度和收敛性,可以广泛用于多个仿真平台。 接下来,我们需要覆盖由EPI区域的多晶硅重叠形成的门极至漏极临界电容CGD。 该电容本质上是高度非线性的金属氧化物半导体(MOS)电容器。 该电容器的耗尽区由掺杂剖面、P阱dpw之间的距离以及外延层的厚度等工艺参数复杂的依赖性控制。SPICE行为方法实施一种基于物理的模型,并将所有这些影响考虑进去 图4 如图4所示,从横截面开始,我们想介绍芯片平面图可扩展性背后的一些概念和结构。灰色区域是有源区。 蓝色无源区与裸芯边缘(die edges)、门极焊盘和门极通道(gate runners)相关。 基于物理几何的衍生确定了无源区和有源区之间的分布,这是实现可扩展性所需的。 我们非常关注在有源和无源区之间的边界区域中形成的寄生电容。 一旦开始忽略布局中的寄生电容,你什么时候才会停止这种错误呢? 所有被忽略的电容最终累积起来成为一个麻烦。 在这种情况下,就无法实现扩展。 而我们的理念是不忽略任何电容器。 碳化硅MOSFET支持非常快的dV / dt,大约每纳秒50至100伏,而dI / dts大约每纳秒3至6安培。器件固有的门极电阻很重要,可以用来抗电磁干扰(EMI)。 图4右边的设计具有较少的门极通道,因此RG较高, 很好地限制了振铃。 图4左边的设计有许多门极通道,因此RG较低。 左边的设计适用于快速开关,但每个区域的RDSon也较高,因为门极通道会在有源区侵蚀掉 图5 现在,我们要谈谈模型验证。 我们首先在左侧的图5中显示输出电流-电压特性。该模型准确预测整个偏置范围,包括高门极处的漂移区和漏极偏差。右图中的精确导通仿真突出了模型的连续性,这对于强固的收敛性能很重要。 除了线性以外,我们经常查看对数刻度,以发现隐藏的不准确和不连续。 图6 在图6中,我们显示了在宽温度范围内的当前电压、RDSon和阈值电压的结果。 SiC MOSFET器件具有稳定的温度性能,因此非常有吸引力。宽温度范围内的高精度建模使设计人员可以充分利用这种特性 图7 前面我们介绍了对复杂器件电容的物理建模。 图7显示了结果。在左侧,CRSS(或CGD)仿真跟踪数据在2个数量级以上的多次变化,仅在对数刻度上可见。 图8 开关结果具有精确建模的固有电容和器件布局寄生效应,如图8所示,无需额外调整模型。 这种水平的保真度使应用设计人员有信心精确地仿真器件电路的相互影响,例如dV / dt、dI / dt、开关损耗和EMI。 门极驱动器和电源环路的相互作用可以被更进一步地研究和优化。 对我们来说,满足客户各种不同的仿真平台要求非常重要。 因此,SPICE方法至关重要。 SPICE不局限于某个专用平台或系统,我们仅使用行业标准仿真软件中的最小公分母结构,从而避免依赖于仿真器的专有方案。 安森美半导体提供一系列先进的宽禁带器件和仿真环境。 完整的产品阵容形成一个生态系统,使客户能够充分利用新的、令人兴奋的宽禁带应用和系统。

               图3


图2显示了典型的碳化硅MOSFET横截面,图3显示了子电路模型的简化版本。

现在介绍该模型的一些元素。 首先,我们谈谈关键通道区域。 在这里,我们使用著名的伯克利BSIM 3v3模型。 我们都尽可能地不做重复工作。 在这种情况下,我们尝试建模MOSFET通道,该通道非常适合用BSIM模型进行。 该模型是基于物理的,通过亚阈值、弱反演和强反演来准确捕获转换。 此外,它具有出色的速度和收敛性,可以广泛用于多个仿真平台。

接下来,我们需要覆盖由EPI区域的多晶硅重叠形成的门极至漏极临界电容CGD。 该电容本质上是高度非线性的金属氧化物半导体(MOS)电容器。 该电容器的耗尽区由掺杂剖面、P阱dpw之间的距离以及外延层的厚度等工艺参数复杂的依赖性控制。SPICE行为方法实施一种基于物理的模型,并将所有这些影响考虑进去.

宽禁带材料实现了较当前硅基技术的飞跃。 它们的大带隙导致较高的介电击穿,从而降低了导通电阻(RSP)。 更高的电子饱和速度支持高频设计和工作,降低的漏电流和更好的导热性有助于高温下的工作。 安森美半导体提供围绕宽禁带方案的独一无二的生态系统,包含从旨在提高强固性和速度的碳化硅(SiC)二极管、SiC MOSFET到 SiC MOSFET的高端IC门极驱动器。 除了硬件以外,我们还提供spice物理模型,帮助设计人员在仿真中实现其应用性能,缩短昂贵的测试周期。 我们的预测性离散建模可以进行系统级仿真,其中可以针对系统级性能指标(例如效率)进行优化,而不局限于优化元器件级性能指标,例如RDS(on)。 此外,设计人员可以放心地模拟数据表中未涵盖的工作条件,例如开关应用的变化温度、总线电压、负载电流和输入门极电阻。 为满足这些需求,模型必须是基于物理规律的、直观的、可预测的,最重要的是精确的。 在IC行业中,追溯到几十年前,采用SPICE模型的支持CAD设计的环境对于IC设计人员准确预测电路性能至关重要。 通过首次正确设计缩短生产周期。 迄今为止,由于缺乏可靠的SPICE模型,电力电子CAD环境远远落后于IC行业。 电力电子器件模型基于简单的子电路和复杂的非物理行为模型。仿真最终不可靠 图1 简单的子电路过于基础简单,不足以充分利用所有器件性能。 在图1中,我们显示了一个CRSS图,将典型的简单模型(蓝色)与更先进的物理模型(绿色)和测量数据(红色)进行了比较。 显然,您可以看到简单模型无法捕获非线性电容效应,最终导致不准确的动态开关仿真。 众所周知,更准确、更复杂的行为模型会导致收敛问题。 此外,此类模型通常以专有的仿真器行为语言(例如MAST™)编写,因此无法跨多个仿真器平台。 通常,电力电子模型既不是基于工艺技术和布局的,也不具有芯片平面布局的可扩展性。 我们以物理可扩展模型开发了一个适用于整个技术平台的模型。 这就是说,它不是包含经验拟合参数的单个模型的库,最终曲线适合所有产品。只需输入给定产品的芯片平面布局参数,通过芯片扩展,我们就可以使技术迅速发展。 在下一级水平,模型中基于物理学的工艺依赖性使我们能够预测新的虚拟技术变化带来的影响。 显然,早期设计有助于从应用角度带动技术要求,并加快产品上市时间。 一方面,工艺和器件设计工程师使用限定的元器件仿真,也称为TCAD。 另一方面,应用和系统级设计人员使用基于SPICE的仿真环境。 基于工艺参数的spice模型有助于这两方面的融合。 现在,我们介绍一下碳化硅功率MOSFET模型的部分特性。 图2 图3 图2显示了典型的碳化硅MOSFET横截面,图3显示了子电路模型的简化版本。 现在介绍该模型的一些元素。 首先,我们谈谈关键通道区域。 在这里,我们使用著名的伯克利BSIM 3v3模型。 我们都尽可能地不做重复工作。 在这种情况下,我们尝试建模MOSFET通道,该通道非常适合用BSIM模型进行。 该模型是基于物理的,通过亚阈值、弱反演和强反演来准确捕获转换。 此外,它具有出色的速度和收敛性,可以广泛用于多个仿真平台。 接下来,我们需要覆盖由EPI区域的多晶硅重叠形成的门极至漏极临界电容CGD。 该电容本质上是高度非线性的金属氧化物半导体(MOS)电容器。 该电容器的耗尽区由掺杂剖面、P阱dpw之间的距离以及外延层的厚度等工艺参数复杂的依赖性控制。SPICE行为方法实施一种基于物理的模型,并将所有这些影响考虑进去 图4 如图4所示,从横截面开始,我们想介绍芯片平面图可扩展性背后的一些概念和结构。灰色区域是有源区。 蓝色无源区与裸芯边缘(die edges)、门极焊盘和门极通道(gate runners)相关。 基于物理几何的衍生确定了无源区和有源区之间的分布,这是实现可扩展性所需的。 我们非常关注在有源和无源区之间的边界区域中形成的寄生电容。 一旦开始忽略布局中的寄生电容,你什么时候才会停止这种错误呢? 所有被忽略的电容最终累积起来成为一个麻烦。 在这种情况下,就无法实现扩展。 而我们的理念是不忽略任何电容器。 碳化硅MOSFET支持非常快的dV / dt,大约每纳秒50至100伏,而dI / dts大约每纳秒3至6安培。器件固有的门极电阻很重要,可以用来抗电磁干扰(EMI)。 图4右边的设计具有较少的门极通道,因此RG较高, 很好地限制了振铃。 图4左边的设计有许多门极通道,因此RG较低。 左边的设计适用于快速开关,但每个区域的RDSon也较高,因为门极通道会在有源区侵蚀掉 图5 现在,我们要谈谈模型验证。 我们首先在左侧的图5中显示输出电流-电压特性。该模型准确预测整个偏置范围,包括高门极处的漂移区和漏极偏差。右图中的精确导通仿真突出了模型的连续性,这对于强固的收敛性能很重要。 除了线性以外,我们经常查看对数刻度,以发现隐藏的不准确和不连续。 图6 在图6中,我们显示了在宽温度范围内的当前电压、RDSon和阈值电压的结果。 SiC MOSFET器件具有稳定的温度性能,因此非常有吸引力。宽温度范围内的高精度建模使设计人员可以充分利用这种特性 图7 前面我们介绍了对复杂器件电容的物理建模。 图7显示了结果。在左侧,CRSS(或CGD)仿真跟踪数据在2个数量级以上的多次变化,仅在对数刻度上可见。 图8 开关结果具有精确建模的固有电容和器件布局寄生效应,如图8所示,无需额外调整模型。 这种水平的保真度使应用设计人员有信心精确地仿真器件电路的相互影响,例如dV / dt、dI / dt、开关损耗和EMI。 门极驱动器和电源环路的相互作用可以被更进一步地研究和优化。 对我们来说,满足客户各种不同的仿真平台要求非常重要。 因此,SPICE方法至关重要。 SPICE不局限于某个专用平台或系统,我们仅使用行业标准仿真软件中的最小公分母结构,从而避免依赖于仿真器的专有方案。 安森美半导体提供一系列先进的宽禁带器件和仿真环境。 完整的产品阵容形成一个生态系统,使客户能够充分利用新的、令人兴奋的宽禁带应用和系统。

图4

如图4所示,从横截面开始,我们想介绍芯片平面图可扩展性背后的一些概念和结构。灰色区域是有源区。 蓝色无源区与裸芯边缘(die edges)、门极焊盘和门极通道(gate runners)相关。 基于物理几何的衍生确定了无源区和有源区之间的分布,这是实现可扩展性所需的。 我们非常关注在有源和无源区之间的边界区域中形成的寄生电容。 一旦开始忽略布局中的寄生电容,你什么时候才会停止这种错误呢? 所有被忽略的电容最终累积起来成为一个麻烦。 在这种情况下,就无法实现扩展。 而我们的理念是不忽略任何电容器。

碳化硅MOSFET支持非常快的dV / dt,大约每纳秒50至100伏,而dI / dts大约每纳秒3至6安培。器件固有的门极电阻很重要,可以用来抗电磁干扰(EMI)。 图4右边的设计具有较少的门极通道,因此RG较高, 很好地限制了振铃。 图4左边的设计有许多门极通道,因此RG较低。 左边的设计适用于快速开关,但每个区域的RDSon也较高,因为门极通道会在有源区侵蚀掉.

声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。

微信关注
技术专题 更多>>
2024慕尼黑上海电子展精彩回顾
2024.06技术专题

头条推荐

电子行业原创技术内容推荐
客服热线
服务时间:周一至周五9:00-18:00
微信关注
获取一手干货分享
免费技术研讨会
editor@netbroad.com
400-003-2006