升压电源拓扑结构在汽车和工业电子领域越来越受欢迎。许多系统都需要稳定的输入轨,其上游电源输入轨电压可能会有显著变化。升压变换器可用于显著提高应用的通用性。利用升压变换器,可以将新的电子设备无缝连接至任何供电轨,且无需重新设计前端或使用多个版本来覆盖各种供电场景。升压控制器还支持对输入电压下降具有高度抑制性的电子器件。这主要与汽车电子设备相关,因为汽车电子设备的供电轨电压在低温启动期间会明显下降。
LTC7804可简化升压变换器的设计,同时不会对其先进的性能产生不利影响。LTC7804的主要特性为:低静态电流、单输出同步整流、高达40 V的宽输入电压范围(输出电压可达36 V)、展频(SSFM)以及适用于高效、低电磁干扰PassThru™操作的内部充电泵。
可实现12 V输入至24 V输出的升压变换器
升压变换器的其中一个优势在于,除了提供稳定的中间输出轨之外,它还可以使系统不受前端电压下降的影响,如启动汽车的蓄电池供电轨电压下降。图1为由低引脚数控制器LTC7804、底部FET Q1、顶部FET Q2、导块L1和输入/输出滤波器组成的升压变换器原理图。该原理图采用的元件数量比较少,但可以将12 V供电轨升压至24 V,并提供6 A的输出电流。在低输入电压下降低输出电流,以确保输入电流低于17.5 A。
在该解决方案中,MODE引脚连接至GND,调用Burst Mode®操作,从而在轻负载条件下保持高效率。PLLIN/SPREAD引脚连接至INTVCC,将开关频率设置为SSFM操作,从而可以轻松地满足已公布的EMI标准要求。该设计已经使用了专用的电流检测电阻进行了测试,但也可以选择使用DCR检测电阻,而不是电流检测电阻。该解决方案的效率如图2所示。
图1.基于LTC7804(在6 A条件下,VIN为6 V至20 V,VOUT为24 V)的升压变换器电气原理图
图2.图1中升压转换器的效率曲线图
抑制输入电压下降和直通模式操作
LTC7804的一个有趣应用就是提供汽车音频放大器和前置放大器。该应用有两个目的。首先,LTC7804可以抑制输入电压骤降,例如:在低温启动期间。其次,当输入电压升至高于输出电平时,它可以将输入桥接至输出,以最大程度提高效率,例如:在负载突降期间。前置放大器电源的电压输出设置值略低于典型12 V汽车电压轨的输入电压(约10 V)。如果输入电压等于或高于该设定值,则输入应直接转到输出。如果输入电压降至低于所需的中间电压,则升压变换器可将其输出保持在设定值。直通这个术语用于描述这种从输入直接到输出的操作模式。
图3所示为升压解决方案的完整原理图。它类似于图1所示解决方案,但控制信号的连接稍有不同。MODE引脚通过100 kΩ电阻连接至INTVCC,以便选择脉冲跳频操作。该应用不支持升压模式操作,因为要实现直通操作,必须使能顶部MOSFET栅极充电泵(在升压模式操作中被禁用)。PLLIN/SPREAD引脚连接至GND,以禁用SSFM功能,因为某些音频系统的电源必须在固定频率下运行,这一点非常重要。如果知道真正问题在于频率,则建议通过PLLIN/SPREAD引脚同步至外部时钟;或者,将MODE引脚直接连接至INTVCC,以便在FREQ引脚的设定操作频率下选择强制连续导通模式。
图3.升压变换器可在直通模式下操作(在5 A条件下,VIN为5 V至16 V,VOUT为10 V)。
图4显示了该解决方案在工作波形下的工作原理。在测试中,输入电压从14 V开始,高于预先设定的变换器输出电压10 V。上管MOSFET Q1的栅极为高,Q1为开启状态(完全增强)。LTC7804内置充电泵可将变换器无限期地保持在该状态之下。在直通模式下,不存在开关操作,且14 V输入电压直接转向输出。只要输入电压高于或等于所需的输出电压,就会使能直通模式,如波形图中所示。即使输入电压降至5V,输出电压也能保持在10 V。一旦输入电压降至预设值以下,开关操作就会开始,以便将输出电压准确保持在该电平。GQ1-VOUT波形是Q1栅极(GQ1节点)上相对于Q1源极(VOUT)的差分电压。
图4.VIN > VOUT时的直通操作。VIN,其中VOUT为5 V/div, 时标为1 ms/div,且GQ1-VOUT为示波器与2.5 V/div的数学函数。
两个变换器的开关频率均在500 kHz左右,以实现效率和尺寸的平衡,但是如果电感(L1)尺寸必须最小化,则可以将开关频率增加到3 MHz。该设计笔记中提出的两种解决方案都在DC2846A上进行了验证和测试。
结论
LTC7804控制器可大大简化高效升压变换器的设计。通过使用相同的原理图和不同的外部元件,可轻松调整可用输出功率。高开关频率可显著减小电感的尺寸。当输入电压下降至明显低于或上升至明显高于输出电平时,内置充电泵和同步整流可确保最高效率,从而使LTC7804成为首选的汽车电子设备控制器。低静态电流还可以保护汽车和常开系统的电池使用寿命。
作者简介
Victor Khasiev是ADI公司的高级应用工程师,在AC/DC和DC/DC转换的电力电子领域拥有丰富的经验。他拥有两项专利,并撰写了多篇文章。这些文章涉及ADI半导体器件在汽车和工业应用中的使用,涵盖了升压、降压、SEPIC、正-负、负-负、反激式、正激式转换器和双向备用电源。他持有高效功率因数校正解决方案和先进的栅极驱动器相关专利。Victor乐于为ADI公司客户提供技术支持解答有关ADI产品、电源原理图设计和验证、印刷电路板布局、故障排查以及最终系统测试的问题。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
气相色谱传感器解决环境监测需求 | 25-01-09 16:00 |
---|---|
带耦合电感的多相降压转换器中关于输出电流和电压纹波的考量因素 | 25-01-08 15:36 |
非常见问题解答第225期:原来为硅MOSFET设计的DC-DC控制器能否用来驱动GaNFET? | 25-01-06 17:10 |
增强视觉传感器功能:3D图像拼接算法帮助扩大视场 | 25-01-03 16:11 |
集成开/关控制器如何提升系统能效 | 25-01-02 16:53 |
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |