为了在无线通信系统中实现更高的数据速率以及在雷达中使用更窄的脉冲来解析近距离目标,对测试和测量仪器的性能和带宽提出了更高的要求。高带宽示波器和射频数字转换器等射频 (RF) 测试和测量仪器可使用射频采样模数转换器 (ADC),对从直流到数千兆赫的信号同时进行数字化。
射频采样 ADC 取代混频器与窄带 ADC 的配置,降低了系统复杂性并提高了宽带测试和测量仪器、雷达和无线收发器的性能。
设计人员通常使用与无源平衡-非平衡变压器级联的单端增益块来驱动射频采样 ADC。不过,这种方法也有缺点,即限制了可实现的性能。在本文中,我们将讨论这些缺点,并说明射频全差分放大器 (FDA) 如何帮助您更大限度提高射频采样 ADC 的性能。
直流耦合射频采样 ADC
射频采样 ADC 接受差分输入,可抑制共模噪声和干扰并改善二阶失真。由于带宽较宽,系统设计人员使用基于变压器的无源平衡-非平衡变压器,将单端射频信号转换为差分信号,以此驱动射频采样 ADC。然而,无源平衡-非平衡变压器在低频侧的工作频率为几百千赫或几十兆赫,视其支持的带宽而定。因此,在测试和测量仪器中使用无源平衡-非平衡变压器驱动射频采样 ADC 会限制可数字化的最低频率。
直流耦合 TRF1305 射频 FDA 可利用直流到 6.5GHz 范围的可用大信号带宽来执行单端至差分转换,同时提供增益。图 1 展示了 TRF1305 射频 FDA 在直流耦合应用中驱动射频采样 ADC 的情况。射频采样 ADC 具有较窄的输入共模范围,超出此共模范围运行会降低 ADC 性能。得益于可采用单电源或灵活双电源并支持输出共模控制,TRF1305 的输出共模更容易与 ADC 的输入共模相匹配。这些功能使该放大器广泛用于直流耦合射频测试和测量仪器,例如高带宽示波器、任意波形发生器和射频数字转换器。
图 1:TRF1305 射频 FDA 直流耦合到射频采样 ADC
线性度更高
信号链中各元件的非线性会影响存在大干扰信号的情况下对小信号的检测。二阶非线性在窄带系统中无关紧要,因为产生的非线性在目标频带之外,并且通常会被滤除。不过,宽带系统并非如此。当输入信号带宽涵盖多个倍频程时,信号的二阶非线性会出现在频带内。例如,假设有一个射频采样 ADC 用于 0.5GHz 至 2GHz 的射频带宽。0.5GHz 信号的二阶非线性发生在该频率的两倍处,即 1GHz 位置。不过,这个二阶非线性小于 2GHz 的最大目标频率,由于无法将其滤除,因此必须将其尽可能降低。
射频采样 ADC 可以在其输入由平衡差分信号驱动时更大限度降低二阶非线性。宽带无源平衡-非平衡变压器的差分输出可能具有较差的增益和相位不平衡,会导致信号不平衡和 ADC 线性性能下降 [1]。用于在无源平衡-非平衡变压器之前放大信号的射频增益块采用单端运行方式,因此具有较差的二阶非线性。TRF1305 和 TRF1208 等射频 FDA 采用了反馈技术,有助于改善差分输出的增益和相位不平衡。这些放大器的差分特性确保了在提供信号放大功能的同时更大限度减少二阶失真,并增强整个系统的线性度。
保护 ADC 不受损坏
在许多测试和测量以及航空航天和国防系统中,用户输入是未知的。这些系统的核心射频 ADC 对高功率级别和过驱很敏感。这些 ADC 也往往具有高性能,通常是信号链中较为昂贵的元件之一。因此,务必谨慎设计信号链,确保上述元件不会损坏 ADC。按照设计,射频 FDA 在将射频采样 ADC 驱动到满量程时呈线性。
图 2 展示了 TRF1208 FDA 在发生 4GHz 连续波输入过载时对应的输出饱和电平。TRF1208 具有 16dB 的增益,其输出在 FDA 的输入功率约为 2dBm 时饱和至 3.6Vpp。因此,通过使用射频 FDA 来驱动 ADC,本身就会在输出削波导致过载期间限制功率。
图 2:发生 4GHz 连续波输入过载时,TRF1208 FDA 的差分输出钳位在 3.6Vpp
如图 3 所示,在 FDA 和 ADC 之间设计一个衰减器垫可以限制 ADC 引脚上的电压摆幅,保护 ADC 不受损坏,简化系统设计注意事项,同时提供更多设计灵活性。
图 3:射频 FDA 的输出在过载时削波,从而限制进入 ADC 的信号功率
结语
射频采样 ADC 的技术进步和实际运用可减少元件数量并减小电路板尺寸,从而简化射频测试和测量仪器的系统架构。专为 ADC 驱动应用定制的射频 FDA(例如 TRF1305)可以对直流到 6.5GHz 以上的信号进行单端至差分转换,进一步简化了系统架构。在接收信号链中配合使用宽带射频 FDA 和射频采样 ADC,可增强系统性能,同时减少元件数量,减小电路板尺寸,并降低系统成本。
其他资源
-在 TI.com 上订购 TRF1305EVM 并立即开始使用。
-阅读文章“在发送信号链设计中使用差分转单端射频放大器的优势”。
-阅读《TRF1208/TRF1108 具有 Xilinx RFSoC 数据转换器的有源平衡-非平衡变压器接口》应用手册,了解更多信息。
-查看德州仪器的射频和微波产品。
参考资料
1.Reeder, Rob. “A close look at active vs. passive RF converter front ends”. Planet Analog, Jan. 26, 2022.发表于《电子设计》杂志。
关于德州仪器 (TI)
德州仪器 (TI)(纳斯达克股票代码:TXN)是一家全球性的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。欲了解更多信息,请访问公司网站www.ti.com.cn。
商标
所有商标均为其各自所有者所有。
声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶editor@netbroad.com。
使用 3.3V CAN 收发器在工业系统中实现可靠的数据传输 | 24-11-21 16:34 |
---|---|
随时随地享受大屏幕游戏:让便携式 4K 超高清 240Hz 游戏投影仪成为现实 | 24-11-14 16:37 |
在发送信号链设计中使用差分转单端射频放大器的优势 | 24-11-13 16:37 |
瑞萨推出包括先进可编程14位SAR ADC在内的 全新AnalogPAK可编程混合信号IC系列 | 24-11-12 16:09 |
实时控制技术如何实现可靠且可扩展的高压设计 | 24-11-04 16:57 |
微信关注 | ||
技术专题 | 更多>> | |
2024慕尼黑上海电子展精彩回顾 |
2024.06技术专题 |