• 回复
  • 收藏
  • 点赞
  • 分享
  • 发新帖

高频电压器的三种完全功能介绍

 高频电源变压器完成功能有三个:功率传送、电压变换和绝缘隔离。
      功率传送有两种方式。第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边。在功率传送过程中,磁芯又分为磁通单方向变化和磁通双方向变化两种工作模式。单方向变化工作模式,磁通密度从最大值 Bm变化到剩余磁通密度Br,或者从Br变化到Bm。磁通密度变化值△B=Bm-Br。为了提高△B,希望Bm大,Br小。双方向变化工作模式磁通度从+ Bm变化到-Bm,或者从-Bm变化到+Bm。磁通密度变化值△B=2Bm,为了提高△B,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关,第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载。传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感。电感与磁芯磁导率有关,磁导率高,电感量大,储能多。而不直接与磁通密度有关。虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容。在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容。只是“降低交流损耗”一节中,提出BAC典型值为0.04-0.075T。显然,文中的高频电源变压器采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚。经查阅,在《电源技术应用》2003年1-2期,同一主要作者写的开关电源“设计要点”一文中,列出一节“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T。由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm 相差6.8~3.7倍?更不清楚,选的那一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了。
     电压变换通过原边和副边绕组匝数比来完成。不管功率传送是那一种方式,原边和副边的电压变换比等于原和副绕组匝数比。绕组匝数设计成多少,只要不改变匝数比,就不影响电压变换。但是绕组匝数与高频电源变压器的漏感有关。漏感大小与原绕组匝数的平方成正比。有趣的是,漏感能不能规定一个数值?《电源技术应用》 2003年第6期同时刊登的两篇文章有着不同的说法。“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%”。“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求。其实这种写法或设计标准很不专业。电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。在制作变压器的过程中,应在不使变压器的其它参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”。“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”。虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值。因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件承受的电压峰值,也对绝缘不利,产生附加损耗和电磁干扰。
     绝缘隔离通过原边和副边绕组的绝缘结构来完成。为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大。还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。这样,匝数有下限,使漏感也有下限。总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题。3.3 提高效率
     提高效率是现在对电源和电子设备的普遍要求。虽然从单个高频电源变压器来看,损耗不大。例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多。但是成十万个,成百万个高频电源变压器,总损耗可能达到上十万W,上百万W。还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上千万kWh。这样,高频电源变压器提高效率,可以节约电力。节约电力后,可以少建发电站。少建发电站后,可以少消耗煤和石油,可以少排放废气、废水、烟尘和灰渣,减少对环境的污染。既具有节约能源,又具有环境保护的双重社会经济效益。因此提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下。

全部回复(2)
正序查看
倒序查看
fuliu
LV.2
2
2011-01-02 14:38

0
回复
fuliu
LV.2
3
2011-01-02 14:40
@fuliu
[图片]
能否讲解一下高频变压器中漏感与寄生电容的处理
0
回复