MOSFET作为一种新型的功率器件,具有开关速度快,内阻低损耗小等优点,但是如果使用不当也容易损坏。MOSFET损坏的原因主要有过压,过流,短路,静电,过热,机械损坏等。
一.过压:
MOSFET的过压主要分为栅源极过压和漏源极过压。
1. 栅源极过压:
MOSFET的栅源极之间允许的电压(VGSS)都有一个限制,业界的一般是±20V,锐骏半导体大部分MOS管的栅源极耐压是±25V,意味着MOSFET的栅源极之间超过这个电压,MOSFET就有可能击穿损坏。为了防止栅源极过压,我们可以采取如下措施:
1).采用12-15V稳定的电压给MOSFET驱动芯片供电;
2).对于无法采用12-15V稳定的电压给MOSFET驱动芯片供电的情况下需要在栅源极之间并联15V的稳压管。
2. 漏源极过压
MOSFET的漏源极之间允许的电压(BVDSS)都有一个限制,意味着MOSFET的漏源极之间超过这个电压,MOSFET就有可能击穿损坏。因此在选型的时候我们需要根据电路的电压输入范围和拓扑结构来选择MOSFET并留有一定的余量。当然,由于分布参数和变压器漏感的影响,在MOSFET的某个工作瞬间往往会瞬间过压,虽然MOSFET具有抗击这种瞬间过压不被损坏的能力,但也不能超过一定的限度,为了电路的安全,我们还是要做好保护措,一般以下几3种:
1).采用瞬态二极管的尖峰抑制电路:
2).采用RC吸收回路:
3).采用RCD吸收回路:
二. 过流
MOSFET能承受的的电流和芯片,时间,结温和电流都有关系,例如锐骏半导体的RU190N08R,芯片在25度时允许通过的电流为ID=190A, 在100度许通过的电流为ID=140A,但是这个只是芯片能承受的电流,当然还受封装的限制,对于TO-220封装来说,只允许通过75A的电流。如果是瞬间呢,在25度时,在300微秒(没有超过安全区域)的脉冲宽度可以通过700A的IDP(峰值电流)。
在设计选型时我们要根据的上述电流参数选择合适的MOSFET并留有一定的余量,MOSFET过流一般都是由于过流后引起结温过高而损坏,或者是超过了安全区域导致耗散功率过大损坏。
常规的过流保护电路有:
1).采用源极串联电流取样电阻的过流保护电路:由图中可以看出,U1的电流比较基准是1V,只要R3两端的压降超过了1V,U1就关断PWM停止输出,从而保护了MOSFET.
2).采用电流互感器取样的过流保护电路:互感器取样的特点是能过很大的电流而损耗小,但体积比较大。
三.短路
短路也可以理解为严重的过流,以锐骏半导体的RU190N08为例,我们来看下MOS管的安全区域:
从曲线上可以看出,当VDS=13V时,300A的电流只有1MS的时间耐量。还有规格书上标明了300US的耐电流是700A,这些都是我们设计短路保护的重要依据。比如我们设计一个24V的系统采用的就是单颗这个型号的MOSFET,经过计算和测量MOSFET回路(包含供电电源的内阻)是20 mΩ,如果不限制短路电流的话,那么短路电流将达到24/20 mΩ=1200A,这个电流有可能使MOSFET在很短的时间内烧毁。所以我们需要快速地检测MOSFET的电流比如达到300A,快速(几十到几百微妙)地关断它。从而保护了MOSFET的安全。
一种典型的过流短路保护电路如下图:
四. 静电
MOSFET由于输入阻抗极高,属于容性负载,因而对静电非常敏感,当输入电容感应静电到一定电压时就有可能损坏。
防静电的一般措施有:
1).包装,采用防静电袋,管脚套短路环;
2).储存环境的湿度控制,保持相对比较高的湿度可以防静电;
3).接地,所有接触MOSFET的设备都要有妥善的接地措施;
4).电路加入防静电措施,如栅极并联稳压管;
5).操作人员的防静电,如穿防静电服,带静电环等。
五. 过热
当MOSFET超过允许的结温时很容易缩短使用寿命,甚至很快烧毁,所以在选型时需要预留值比较大,并设计过热保护电路。
一般的过热保护电路由热敏电阻做温度检测,如PTC,超过一定温度,PTC的电阻会上升很多,如果在PTC上通过一个电流,其两端的电压也会上升很多,我们可以用比较器设定一个基准电平,超过这个基准电平,比较器就会发出一个高或地电平关断MOSFET,这就是典型的温度保护的原理,其典型的电路如下:
六. 机械损坏
由于芯片和管壳的弹性系数不同,虽然在管壳螺丝孔和芯片之间加了机械应力缓冲措施,当它们封装成一个整体后,还是不能超过一定的机械应力,比如对于TO-220封装在打螺丝时,(电动)螺丝刀的扭力不应超过6KG.