• 回复
  • 收藏
  • 点赞
  • 分享
  • 发新帖

高速MOS驱动电路设计

MOSFET工作在开关状态下,目标是在可能的最短时间内实现器件在最低阻抗和最高阻抗之间的切换。由于MOSFET实际的开关时间(10ns—60ns)至少比理论开关时间(50ps—200ps)大2~3个数量级,因此有必要了解其差异。参考图2MOSFET的模型,可以发现所有的模型在器件的三端之间都连有一个等效电容。毫无疑问,开关速度和性能决定于这三个电容上电压变化的快慢。

因此,在高速开关应用中,器件的寄生电容是一个重要的参数。电容CGS和电容CGD与器件的实际几何尺寸有关,而电容CDS是寄生在双集晶体管的基集二极管间的电容。

电容CGS是由于源极和栅极形成的沟道区域的重叠形成的。它的值由器件实际的区域几何尺寸决定而且在不同的工作条件下保持不变。电容CGD由两个因素决定。一是耗尽层(是非线性的)的电容;二是JFET区域和栅极的重叠。等效电容CGD是器件漏源极电压的函数。
全部回复(3)
正序查看
倒序查看
liyidong
LV.1
2
2013-11-29 16:59

大致可用下面公式计算得到:

电容CDS也是非线性的,这是由于它是体二极管的结电容。它和电压间关系为:

上述的所有电容在器件的资料表中均未涉及和说明。它们的值由Ciss(栅短路共源输入电容)、Crss(栅短路共源反向传输电容)、Coss(栅短路共源输出电容)间接给出,而且必须用下列公式计算:

在开关应用中,电容CGD会引起其他复杂问题,这是由于它处于器件输入与输出间的反馈回路中。因此,它在开关应用中有效值可能会很大,它的值取决于MOSFET的漏源极电压。这种现象被称为“Miller”效应,而且可以用下式表示:

由于电容CGDCGS是和电压有关的,因此只有把测试条件列出来时,那些资料中的数据才是有效的。对于一个确定的应用,有关的平均电容值必须由计算得来,而计算是基于建立于实际电压所需要的电荷。对于大多数的功率MOSFET来说,下面公式将会十分有用:

0
回复
liyidong
LV.1
3
2013-11-29 17:03
@liyidong
大致可用下面公式计算得到:[图片]电容CDS也是非线性的,这是由于它是体二极管的结电容。它和电压间关系为:[图片]上述的所有电容在器件的资料表中均未涉及和说明。它们的值由Ciss(栅短路共源输入电容)、Crss(栅短路共源反向传输电容)、Coss(栅短路共源输出电容)间接给出,而且必须用下列公式计算:[图片]在开关应用中,电容CGD会引起其他复杂问题,这是由于它处于器件输入与输出间的反馈回路中。因此,它在开关应用中有效值可能会很大,它的值取决于MOSFET的漏源极电压。这种现象被称为“Miller”效应,而且可以用下式表示:[图片]由于电容CGD和CGS是和电压有关的,因此只有把测试条件列出来时,那些资料中的数据才是有效的。对于一个确定的应用,有关的平均电容值必须由计算得来,而计算是基于建立于实际电压所需要的电荷。对于大多数的功率MOSFET来说,下面公式将会十分有用:[图片]

导通过程

       MOSFET的导通过程可分为如图4(即Figure4)所示的四个阶段。

第一个阶段:输入电容从0开始充电到Vth,在这个过程,栅极绝大部分电流都用来给电容CGS充电,也有很小的电流流过电容CGS。当电容CGS的电压增加到门的极限时,它的电压就会有稍微的减小。这个过程称为导通延迟,这是因为此时器件的漏极电流和漏极电压均未发生变化。

当栅极电压达到开启电压时,MOSFET处于微导通状态。在第二个阶段,栅极电压从Vth上升到Miller平坦区,即VGS,Miller。这是器件的线性工作区,电流和栅极电压成正比。在栅极的一侧,电流如第一阶段一样流入电容CGSCGD,电容VGS的的电压将会不断升高。在器件的输出端,漏极电流也不断变大,但是漏源电压基本不变,保持先前水平(VDS,OFF )。这从图3的原理图可以看出来。当所有电流都流入MOSFET而且二极管完全截止(pn结能承受反向电压)后,漏极电压必须保持在输出电压水平。

进入导通过程的第三个阶段,栅极电压(VGS,Miller)已经足够使漏极电流全部通过,而且整流二极管处于完全截止状态。现在允许漏极电压下降。在器件漏极电压下降过程中,栅源电压保持不变。这就是栅极电压波形的Miller平坦区。从驱动得到的可用的所有栅极电流通过电容CGD放电,这将加快漏源电压变化。而漏极电流几乎不变,这是由于此刻它受外部电路(即直流电流源)限制。

最后一个阶段MOSFET沟道增强,处于完全导通状态,这得益于栅极的电压已经足够高。最终的VGS电压幅度将决定器件最终导通阻抗。因此,在第四个阶段,电压VGSMiller平坦区增大到其最大值VDRV。这由于电容CGSCGD的充电完成,因此栅极电流被分成这两部分。在这两个电容充电过程中,漏极电流保持不变,漏源电压也随着导通阻抗的减小而慢慢的减小。

关断过程

       MOSFET的关断过程恰好和它的导通过程相反。电压VGS从图3VDRV开始,电流从图3的最大负载电流IDC开始。漏源电压由MOSFET的电流IDC和导通阻抗决定。图5完整的显示了关断的四个阶段。

第一个阶段是关断延迟,这阶段需要电容CISS从最初值电压放电到Miller平坦区水平。这期间栅极电流由电容CISS提供,而且它流入MOSFET的电容CGSCGD。器件的漏极电压随着过载电压的减小而略微的增大。此阶段漏极电流几乎不变。

在第二个阶段,管子的漏源电压从IDC·RDS(On)增加到最终值(VDS(off),由图3的原理图可知它是由整流二极管强制决定的。在这一阶段,即相当于栅极电压波形的Miller平坦区,栅极电流完全是电容CGD的充电电流因为栅源电压是不变的。这个电流由电源级的旁路电容提供而且它是从漏极电流减掉的。总的漏极电流仍然等于负载电流,也就是图3直流电源表示的感应电流。

二极管的导通预示着第三个阶段的开始,二极管给负载电流提供另一通路。栅极电压从VGS,Miller降到Vth。大部分的栅极电流来自于电容CGS,因为事实上电容CGD在前一个阶段是充满电的。MOSFET处于线性工作区,而且栅源电压的降低将会导致漏极电流的减小,在这个阶段的最后漏极电流几乎达到0。与此同时,由于整流二极管的正向偏置漏极电压将维持在VDS(off)

截止过程的最后一个阶段是器件的输入电容完全放电。电压VGS进一步减小到0。占栅极电流较大比例部分的电流,和截止过程的第三阶段一样,由电容CGS提供。器件的漏极电流和漏极电压保持不变。

综合上述结论,可以总结为:在四个阶段(无论是导通还是关断)里,场效应晶体管可在最大阻抗和最小阻抗间变换。四个阶段的时间是寄生电容、所需电压变化、栅极驱动电流的函数。这就突出了在高速、高频开关应用设计中器件选择部分和栅极最适合工作条件的重要性。

MOSFET典型的开启延迟时间、关断延迟时间、上升沿时间、下降沿时间会在资料表中列出。不幸的是,这些数据适用于特殊的测试条件而对于有阻抗的负载,不同厂家的产品使得比较变得困难。而且,实际开关应用中呈感性的负载的数据和资料表上给的又是有很大差别。

0
回复
Temo
LV.5
4
2014-08-25 21:16
@liyidong
导通过程      MOSFET的导通过程可分为如图4(即Figure4)所示的四个阶段。[图片]第一个阶段:输入电容从0开始充电到Vth,在这个过程,栅极绝大部分电流都用来给电容CGS充电,也有很小的电流流过电容CGS。当电容CGS的电压增加到门的极限时,它的电压就会有稍微的减小。这个过程称为导通延迟,这是因为此时器件的漏极电流和漏极电压均未发生变化。当栅极电压达到开启电压时,MOSFET处于微导通状态。在第二个阶段,栅极电压从Vth上升到Miller平坦区,即VGS,Miller。这是器件的线性工作区,电流和栅极电压成正比。在栅极的一侧,电流如第一阶段一样流入电容CGS和CGD,电容VGS的的电压将会不断升高。在器件的输出端,漏极电流也不断变大,但是漏源电压基本不变,保持先前水平(VDS,OFF)。这从图3的原理图可以看出来。当所有电流都流入MOSFET而且二极管完全截止(pn结能承受反向电压)后,漏极电压必须保持在输出电压水平。进入导通过程的第三个阶段,栅极电压(VGS,Miller)已经足够使漏极电流全部通过,而且整流二极管处于完全截止状态。现在允许漏极电压下降。在器件漏极电压下降过程中,栅源电压保持不变。这就是栅极电压波形的Miller平坦区。从驱动得到的可用的所有栅极电流通过电容CGD放电,这将加快漏源电压变化。而漏极电流几乎不变,这是由于此刻它受外部电路(即直流电流源)限制。最后一个阶段MOSFET沟道增强,处于完全导通状态,这得益于栅极的电压已经足够高。最终的VGS电压幅度将决定器件最终导通阻抗。因此,在第四个阶段,电压VGS从Miller平坦区增大到其最大值VDRV。这由于电容CGS和CGD的充电完成,因此栅极电流被分成这两部分。在这两个电容充电过程中,漏极电流保持不变,漏源电压也随着导通阻抗的减小而慢慢的减小。关断过程      MOSFET的关断过程恰好和它的导通过程相反。电压VGS从图3的VDRV开始,电流从图3的最大负载电流IDC开始。漏源电压由MOSFET的电流IDC和导通阻抗决定。图5完整的显示了关断的四个阶段。[图片]第一个阶段是关断延迟,这阶段需要电容CISS从最初值电压放电到Miller平坦区水平。这期间栅极电流由电容CISS提供,而且它流入MOSFET的电容CGS和CGD。器件的漏极电压随着过载电压的减小而略微的增大。此阶段漏极电流几乎不变。在第二个阶段,管子的漏源电压从IDC·RDS(On)增加到最终值(VDS(off)),由图3的原理图可知它是由整流二极管强制决定的。在这一阶段,即相当于栅极电压波形的Miller平坦区,栅极电流完全是电容CGD的充电电流因为栅源电压是不变的。这个电流由电源级的旁路电容提供而且它是从漏极电流减掉的。总的漏极电流仍然等于负载电流,也就是图3直流电源表示的感应电流。二极管的导通预示着第三个阶段的开始,二极管给负载电流提供另一通路。栅极电压从VGS,Miller降到Vth。大部分的栅极电流来自于电容CGS,因为事实上电容CGD在前一个阶段是充满电的。MOSFET处于线性工作区,而且栅源电压的降低将会导致漏极电流的减小,在这个阶段的最后漏极电流几乎达到0。与此同时,由于整流二极管的正向偏置漏极电压将维持在VDS(off)。截止过程的最后一个阶段是器件的输入电容完全放电。电压VGS进一步减小到0。占栅极电流较大比例部分的电流,和截止过程的第三阶段一样,由电容CGS提供。器件的漏极电流和漏极电压保持不变。综合上述结论,可以总结为:在四个阶段(无论是导通还是关断)里,场效应晶体管可在最大阻抗和最小阻抗间变换。四个阶段的时间是寄生电容、所需电压变化、栅极驱动电流的函数。这就突出了在高速、高频开关应用设计中器件选择部分和栅极最适合工作条件的重要性。MOSFET典型的开启延迟时间、关断延迟时间、上升沿时间、下降沿时间会在资料表中列出。不幸的是,这些数据适用于特殊的测试条件而对于有阻抗的负载,不同厂家的产品使得比较变得困难。而且,实际开关应用中呈感性的负载的数据和资料表上给的又是有很大差别。
很不错。
0
回复