• 回复
  • 收藏
  • 点赞
  • 分享
  • 发新帖

使用氮化镓(GaN)提高电源效率

作者:Doug Bailey,Power Integrations市场营销副总裁

如今,越来越多的设计者在各种应用中使用基于氮化镓的反激式AC/DC电源。氮化镓之所以很重要,是由于其有助于提高功率晶体管的效率,从而减小电源尺寸,降低工作温度。 

晶体管无论是由硅还是由氮化镓制成,都不是理想的器件,使其效率下降的两个主要因素(在一个简化模型中):一个是串联阻抗,称为RDS(ON),另一个是并联电容,称为COSS。这两个晶体管参数限制了电源的性能。氮化镓是一种新技术,设计者可以用它来降低由于晶体管特性的不同而对电源性能产生的影响。在所有晶体管中,随着RDS(ON)的减小,管芯尺寸会增加,这会导致寄生COSS也随之增加。在氮化镓晶体管中,COSS的增加与RDS(ON)的减少之比要低一个数量级。

RDS(ON) 是开关接通时的电阻,它造成导通损耗。COSS的功率损耗等于CV2/2(见图1)。当晶体管导通时,COSS通过RDS(ON)放电,导致导通损耗。导通损耗等于(CV2/2) x f,其中f是开关频率。用氮化镓开关替换硅开关会降低RDS(ON)和COSS的值,能够设计出更高效的电源,或实现在更高频率下工作,而对效率的影响较小,这有助于缩小变压器的尺寸。

图1:初级功率开关中的寄生电容

氮化镓如何降低导通和开关损耗我们谈到了增加晶体管尺寸的后果:随着晶体管变大,RDS(ON)会减小。这没有问题。然而,随着晶体管变大,(显然)面积会更大,因此寄生电容COSS也会增加。这不是好事。最佳的晶体管尺寸应使RDS(ON)和COSS的组合最小化。该点通常位于降低RDS(ON)损耗的曲线与增加COSS损耗的曲线的相交处。当曲线相交时,电阻和电容损耗的组合最低(见图2)。

图2:硅MOSFET中的功率损耗相对于器件尺寸的简化示意图

除了总RDS(ON)之外,还有一个名为“特定RDS(ON)”的参数,该参数将总导通电阻与管芯单位面积相关联。与硅相比,氮化镓具有非常低的特定RDS(ON),因此开关更小,并且COSS也更低。这意味着更小的氮化镓器件可以处理与更大的硅器件相同的功率水平。

图3:相较于硅MOSFET,氮化镓器件的总损耗更低 

较低的RDS(ON)和较小的COSS损耗相结合,可以使用氮化镓设计出更高效率的电源,从而减少散热。所需耗散热量的降低也有助于缩小电源尺寸。频率是设计者可以用来减小尺寸和优化使用氮化镓的电源性能的另一个手段。由于氮化镓本质上比硅更高效,因此有可能提高基于氮化镓的电源的开关频率。虽然这会增加损耗,但它们仍会显著低于硅MOSFET的损耗,并减小变压器的尺寸。 

变压器结构的实际限制和电路中的寄生元件限制了开关频率可以有效地提高到何种程度。在实际设计中,对于额定功率为≤100W的基于氮化镓的反激式适配器来说,能够提供效率、尺寸和低成本的最佳组合的开关频率可以低于100kHz。对于氮化镓而言,限制因素不是开关速度。随着COSS的大幅减小,设计者有了更大的灵活性,可以针对损耗优化开关频率,达成一个卓越的解决方案。

利用氮化镓提高电源效率电源效率的提高究竟是如何实现的呢?

举例来说,对于一个使用硅MOSFET的65W反激式适配器,其效率曲线在10%负载下处于约85%的范围内,在满载时将达到90%以上(见图4)。而一个使用Power Integrations (PI)公司基于氮化镓的InnoSwitch™器件的65W反激式适配器,其效率在10%负载下将约为88%。在满载时,这款氮化镓设计的效率将达到约94%。假如用氮化镓器件取代硅MOSFET,在整个负载范围内将可实现约3%的效率改进。

图4:碳化硅与氮化镓适配器在满载时的效率比较

效率提高3%相当于损耗减少至少35%。氮化镓设计的能耗更少,产生的热量减少35%。这一点非常重要,因为初级功率开关通常是传统电源中最热的元件。氮化镓的散热需求也会下降。电源体积将会更小,重量更轻,也更便携,并且由于元件的温度较低,电源的工作温度将更低,拥有更长的使用寿命。

如何使用氮化镓晶体管进行设计

在功率变换器设计中,分立的氮化镓晶体管不能用作硅器件的直接替代品。氮化镓晶体管的驱动更具挑战性,尤其是在驱动电路距晶体管有一定距离的情况下。氮化镓器件的导通速度非常快,如果没有精心优化的驱动电路,这可能会导致电磁干扰甚至破坏性振荡的严重问题。氮化镓器件通常是处于“常开”的状态,这对于功率开关来说并不理想,因此分立的氮化镓开关通常与一个共源共栅排列的低压硅晶体管搭配一起工作。

为了帮助客户实现可靠耐用的设计并加快产品上市时间,PI推出了InnoSwitch3产品系列。这些高度集成的反激式开关IC已内置用于氮化镓初级侧和次级侧同步整流管的控制器。InnoSwitch3 IC具有低空载功耗,并采用名为FluxLink™的高带宽通信技术,该技术使反馈信息可在安规隔离带之间传递,绝缘性能符合国际安全标准。 

InnoSwitch3-PD是InnoSwitch3产品系列的最新成员,具有初级和次级控制器以及氮化镓初级开关。该器件可提供完整的USB PD和PPS接口功能,无需USB PD + PPS电源通常所需的微控制器。其他采用氮化镓的PI产品包括:采用数字控制并支持动态调整电源电压和电流的InnoSwitch3-Pro;名为InnoSwitch3-MX的多路输出版本;以及LED驱动器IC LYTSwitch™-6。

图5:InnoSwitch3集成解决方案利用氮化镓技术提供高性能反激式电源 并加快开发时间。

总结氮化镓即将在市场大行其道。越来越多的应用,包括USB PD适配器、电视机、白色家电和LED照明,共超过60种不同的应用,已经在享受氮化镓带来的好处。当可以使用不超过100W的反激式AC/DC电源时,越来越多的设计者选择氮化镓来设计体积更小、重量更轻、工作温度更低、可靠性更高的电源。

全部回复(25)
正序查看
倒序查看
iszjt
LV.5
2
2021-12-17 10:55

功率晶体管是造成开关电源功率损耗的主要因素之一,晶体管的损耗通常分为两类:传导和切换,传导损耗是由晶体管导通时电流流动引起的损耗,而开关损耗在导通和截止状态之间的转换中发生。

0
回复
#回复内容已被删除#
3
trllgh
LV.9
4
2021-12-20 21:01

氮化镓(GaN)具有很多的优势,有更高的漏极效率、更大的带宽、更高的击穿电压和更高的结温操作更高的工作温度等等。PI有很多IC采用了氮化镓

 

0
回复
米修儿
LV.4
5
2021-12-22 13:55

设计体积更小、重量更轻、工作温度更低、可靠性更高的因素,越来越多的产品选择氮化镓

0
回复
XHH9062
LV.9
6
2021-12-22 16:07

氮化镓是后续的趋势

0
回复
不可说
LV.5
7
2021-12-23 13:48

氮化镓目前还没有低压的MOS可以选择。

高压的MOS如果价格可以接受,确实能明显提高效率,而且还省去了散热器。

0
回复
2021-12-23 19:13

GaN器件的开关频率可以做到非常的高,利用这点可以很有效的降低磁芯体积,顺带就减小了适配器的体积

0
回复
2021-12-25 16:04

啥时候介绍下SiC工艺和GAN工艺的区别,顺便科普一下前两代半导体的材料~

0
回复
2021-12-27 12:44

氮化镓GaN在未来前景很非常大的;开关频率高节省磁芯部分费用和体积;省去散热的金属;转化效率也高,能耗更低使用更安全;期待成本降低

0
回复
2021-12-27 19:03

氮化镓开关替换硅开关会降低RDS(ON)和COSS的值

0
回复
2021-12-27 19:03

氮化镓开关替换硅开关会降低RDS(ON)和COSS的值

0
回复
2021-12-27 22:55

基于氮化镓的反激式AC/DC电源在实际使用过程可以提高的效率多少?

0
回复
2021-12-29 11:39

GaN驱动都是使用集成的吗

0
回复
liunian0711
LV.1
15
2022-01-25 11:23

最后的效率能做到多少

0
回复
liweicheng
LV.7
16
2022-01-26 17:55

分立的氮化镓晶体管不能用作硅器件的直接替代品,有何不可的原因?细说

0
回复
liweicheng
LV.7
17
2022-01-26 18:00

氮化镓器件通常是处于“常开”的状态

何为常开?有什么劣势?

0
回复
2022-01-27 08:53

在半桥软开关电路中,功率器件采用GaN 时,如何减少反向导通的高损耗?

0
回复
liweicheng
LV.7
19
2022-01-27 18:22

GaN的工作频率多少?为何可以称为宽禁带器件?

0
回复
cmdz002
LV.5
20
2022-02-20 10:18

RDS(ON) 造成导通损耗是必然的,尽量选小的RDS

0
回复
鲁珀特
LV.4
21
2022-02-21 15:42

材料科技的不断进步整体上提高了电源行业的功率密度。

0
回复
2022-02-21 21:24

氮化镓驱动电路如何设计呢,有啥注意事项吗,未来应用如何呢

0
回复
小燕纸
LV.4
23
2022-02-23 22:44

用氮化镓开关替换硅开关会降低RDS(ON)和COSS的值

0
回复
liweicheng
LV.7
24
2022-02-25 18:58

氮化镓之所以很重要,是由于其有助于提高功率晶体管的效率,从而减小电源尺寸,降低工作温度

0
回复
听听1234
LV.3
25
2022-02-28 10:43

氮化镓(GaN)替代硅材质越来越明显

0
回复
方笑尘MK
LV.7
26
2022-09-24 10:03

氮化镓GaN的确现在比较火,特别是目前无论是手机还是电动汽车,都是希望有快充功能,高效率的电能转换,还有良好的散热性,这都是它的优势,就是价格目前还比较贵

0
回复