electronicLee
认证:VIP会员
所在专题目录 查看专题
工程师必知!EMI指南第四部分----辐射发射
工程师必知!EMI指南第五部分----集成FET的EMI抑制技术
工程师必知!EMI指南第六部分----“半桥”结构EMI抑制技术
全面剖析!反激变换器的共模噪声(EMI第七部分)
反激变换器的共模噪声--续(EMI第七部分)
详尽!隔离电源中的共模噪声抑制方法(EMI第八部分)
作者动态 更多
基础电路——Buck、Boost、buck-boost
2023-04-09 16:34
基础电路——线性变换器
2023-04-09 16:26
电动汽车800V平台逆变器
2022-09-18 15:38
铁路应用中DCDC变换器性能要求
2022-09-18 15:24
PFC设计考虑的几个点——电路结构
2022-07-07 20:22

反激变换器的共模噪声--续(EMI第七部分)

接上一篇,本文主要对共模噪声通路进行建模分析。

CM 噪声分析模型

图 4a 所示为双绕组变压器,初级侧端子和次级侧端子分别由(A、B)和(C、D)表示。端子 A 根据输入总线电容等效连接到 PGND,在 CM 噪声分析的适用频率下表现为有效短路。图 4b 显示的是变压器的传统静电模型。从节能角度来看,可建立包含六个电容的双绕组变压器的寄生电容模型,其中包括四个绕组间电容(C1、C2、C3、C4)和两个绕组内电容(CP、CS)。

除了影响脉冲开关电压波形的 dv/dt 之外,绕组内电容不影响从初级侧到次级侧的位移电流。此六电容此模型不必要地提高了复杂性,并增大了变压器等效电容的计算难度。但是,用等效噪声电压源代替非线性开关器件(根据 CM 噪声分析的替换定理)时,会将一个独立或非独立的噪声电压源与变压器绕组并联,并且可以去除两个绕组内电容。绕组电容模型可简化为四个集总电容,如图 4c 所示,图中 vSW  vSW/NPS 分别是初级侧绕组和次级侧绕组上的开关电压源。假设漏电感较低,则绕组电压会如预期般根据变压器匝数比 NPS 变化。

图 4.(a) 用于 CM 噪声分析的双绕组变压器;(b) 六电容 CM 模型;(c) 四电容 CM 模型。

最后,当其中一个变压器绕组等效连接到独立电压源(以替代非线性开关)时,两个集总电容便足以表现出双绕组变压器绕组间寄生电容的特征。双电容模型的推导与位移电流守恒原则一致。如图 5a 所示,可能的双电容绕组电容模型总共有六种。图 5b 显示了其中一种可能的双电容 CM 模型实现方案(使用电容 CAD 和 CBD)及其相应的戴维宁等效电路。

图 5:(a) 六种可能的双电容 CM 模型;(b) 双电容 CM 模型及其戴维宁等效电路

双电容 CM 噪声模型可灵活地用于不同的隔离型稳压器拓扑,并有助于通过实验测量推导出变压器集总电容模型。CTOTAL 是用阻抗分析仪测得的变压器结构化绕组间电容,测量时将初级侧和次级侧端子短接,然后将变压器用作单端口网络。对初级侧绕组端子(A、B)施加源阻抗为 50W 的开关频率正弦激励信号,并测量 VAD 与 VAB 的电压比,可由公式 1 推导出 CBD:

显然,该模型的优点是通过简单的实验测量即可轻松推导出寄生电容,而无需了解变压器结构或电位沿绕组的分布情况。 

反激式稳压器 CM 噪声模型

图 6 所示为具有初级侧、次级侧、辅助和屏蔽绕组的反激式变压器的 CM 模型(与图 3 类似,但包含一个初级侧接地屏蔽绕组)。NA 和 NSH 分别是初级侧绕组与辅助绕组以及初级侧绕组与屏蔽绕组的匝数比。对于初级侧绕组与辅助绕组的耦合以及初级侧绕组与屏蔽绕组的耦合,由于电流仅在初级侧流动,不会返回 LISN,因此对所测量的共模噪声不产生影响,因此不考虑这些耦合。这样,三个 4 电容电路便足以对初级侧到次级侧、辅助到次级侧以及屏蔽到次级侧绕组之间的耦合进行建模。根据用作 CM 噪声低阻抗的输入电容,初级侧绕组的端子 A 与 PGND 短接。

图 6:(a) 多绕组反激式变压器集总 CM 寄生电容模型;(b) 双电容 CM 模型;(c) 戴维宁等效电路

根据前面的讨论,只需要两个独立电容和一个电压源即可描述 CM 特性,表达式已包括在图 6 中。如前文所述,CTOTAL 是测得的短路初级侧基准绕组与短路次级侧绕组之间的电容。

为建立图 3 中反激式稳压器的 CM 噪声模型,图 7 中用方框突出表示了随后替换为适当双电容 CM 变压器模型的变压器(包括初级侧、次级侧、辅助和屏蔽绕组)。根据替换定理,将电路中的非线性开关器件替换为时域电压或电流波形与原始器件完全相同的电压或电流源时,电路中的所有电压和电流都不会发生变化。因此,电压波形与 MOSFET 的漏源极电压相同的电压源 (VSW) 将代替 MOSFET。同样,电流波形与二极管电流相同的电流源 (IDOUT 和 IDCL) 将代替两个二极管。替代后,电路中的电压和电流保持不变。

同时,输入和输出电容对 CM 噪声的阻抗非常小,因此可将其阻抗忽略。CM 扼流器串联阻抗表示为 ZCM-CHOKE,25W 测量电阻反映了 LISN 的特征。最后,去除了对流经 LISN 的 CM 噪声没有显著影响的寄生电容。图 7a 呈现了应用替换定理后反激式稳压器的 CM 噪声模型。

图 7:(a) 基于替换定理的反激式电路模型;(b) 应用叠加定理后反激式稳压器的最终 CM 模型

与电压源并联或与电流源串联的元器件对网络中的电压或电流无影响,因此可以去除。叠加定理可帮助分别分析 IDCL、IDOUT 和 VSW 的作用。显然,IDCL 和 IDOUT 已短路,不会产生 CM 噪声。图 7b 显示的是最终 CM 模型,公式 2 可计算在 LISN 测得的 CM 噪声电压:

随后,可以方便地应用包含测得的 VSW 波形的电路仿真,对 CM 噪声以及各个元器件所产生的影响进行分析。如果假设漏电感的阻抗远低于总寄生绕组电容 CTOTAL,则可以认为该模型是准确的。显然,减小 CBD 和增大 ZCM-CHOKE 或 CZ 都会导致噪声电压降低。注意,如果根据公式 1 测得的 VAD 为零,则 CBD 实际上是零,基本上消除了通过变压器的 CM 噪声。这是非常方便的测试变压器是否平衡的手段。

基于双电容变压器模型的 CM 噪声模型的一般推导过程遵循以下六个步骤:

  1. 应用替换定理,将非线性半导体器件替换为等效电压源或电流源。替换的原则是,获得易于分析的 CM 噪声电路,同时避免电压回路和电流节点。电压源和电流源的时域波形应与原始器件相同。输入电容和输出电容对 CM 噪声的阻抗非常小,因此视为短路。
  2. 如果将其中一个变压器绕组与电压源并联,则将所有其他绕组替换为受控电压源,因为绕组电压取决于变压器匝数比。
  3. 去除所有与电压源并联或与电流源串联的元器件,简化模型。
  4. 用图 5a 中最能简化 CM 噪声分析的其中一个双电容模型替换原来的变压器。
  5. 根据叠加定理,分析由所有电压源和电流源产生的 CM 噪声。
  6. 分析使用步骤 1 到 5 创建的电路,去除对流经 LISN 的 CM 噪声无影响的寄生电容。根据所得的 CM 噪声模型检查 CM 噪声电流。

    总结

    从 EMI 的角度来看,传统的硬开关隔离式转换器与非隔离式转换器相比更具挑战。近来,业界对于隔离式 DC-DC 稳压器中高频变压器的性能要求愈发严苛,尤其是在 EMI 方面。变压器不断变化的绕组间电容相当于 CM 噪声的关键耦合路径。

    所提出的变压器双电容模型应用广泛,使用简单,这是因为其集总电容可通过一种简单的测量方法轻松量化。在本 EMI 系列文章的下一部分,将采用该模型设计隔离型转换器的 EMI 抑制技术并对其进行表征,其中包括噪声平衡及噪声消除等内容。

声明:本内容为作者独立观点,不代表电子星球立场。未经允许不得转载。授权事宜与稿件投诉,请联系:editor@netbroad.com
觉得内容不错的朋友,别忘了一键三连哦!
赞 7
收藏 9
关注 1319
成为作者 赚取收益
全部留言
0/200
  • dy-icXFVvIG 2021-09-13 17:03
    思路清晰,受益匪浅
    回复
  • dy-FHED9mtt 2021-09-10 15:26
    大开眼界,真是好文
    回复