热敏电阻抑制脉冲电流
起到作用啦,开机是只是一瞬间的事而已~~~要是你等到发烫的话,你的电路估计也就烧咯。
看看他的原理
抑制浪涌用NTC热敏电阻器,是一种大功率的圆片式热敏电阻器,常用于有电容器、加热器和马达启动的电子电路中。
在电路电源接通瞬间,电路中会产生比正常工作时高出许多倍的浪涌电流,而NTC热敏电阻器的初始阻值较大,可以抑制电路中过大的电流,从而保护其电源电路及负载。
当电路进入正常工作状态时,热敏电阻器由于通过电流而引起阻体温度上升,电阻值下降至很小,不会影响电路的正常工作。
该产品具有承受功率大、热响应速度快、抑制大电流能力强的特点,能保证计算机等设备的电源和电子电路免受大电流冲击而损坏,是提高电路可靠性的理想元件。
在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。
开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。
断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。
NTC热敏电阻的选型要考虑以下几个要点:
最大额定电压和滤波电容值
滤波电容的大小决定了应该选用多大尺寸的NTC。对于某个尺寸的NTC热敏电阻来说,允许接入的滤波电容的大小是有严格要求的,这个值也与最大额定电压有关。在电源应用中,开机浪涌是因为电容充电产生的,因此通常用给定电压值下的允许接入的电容量来评估NTC热敏电阻承受浪涌电流的能力。对于某一个具体的NTC热敏电阻来说,所能承受的最大能量已经确定了,根据一阶电路中电阻的能量消耗公式E=1/2×CV2可以看出,其允许的接入的电容值与额定电压的平方成反比。简单来说,就是输入电压越大,允许接入的最大电容值就越小,反之亦然。
NTC热敏电阻产品的规范一般定义了在220Vac下允许接入的最大电容值。假设某应用条件最大额定电压是420Vac,滤波电容值为200μF,根据上述能量公式可以折算出在220Vac下的等效电容值应为200×4202/2202=729μF,这样在选型时就必须选择220Vac下允许接入电容值大于729μF的型号。
产品允许的最大启动电流值和长期加载在NTC热敏电阻上的工作电流
电子产品允许的最大启动电流值决定了NTC热敏电阻的阻值。假设电源额定输入为220Vac,内阻为1Ω,允许的最大启动电流为60A,那么选取的NTC在初始状态下的最小阻值为Rmin=(220×1.414/60)-1=4.2(Ω)。至此,满足条件的NTC热敏电阻一般会有一个或多个,此时再按下面的方法进行选择。
产品正常工作时,长期加载在NTC热敏电阻上的电流应不大于规格书规定的电流。根据这个原则可以从阻值大于4.2Ω的多个电阻中挑选出一个适合的阻值。当然这指的是在常温情况下。如果工作的环境温度不是常温,就需要按下文提到的原则来进行NTC热敏电阻的降额设计。