由于是第一次发帖 希望各位大神尽量吐槽,点评,扔鸡蛋 、砸砖头(限金砖,不可以砸人)、小李不胜感激万分感谢!
做电源RD的,很多时候我们需要耐心、认真、细心、谨慎!
下面我就分享我一个最近做过的项目吧。
挑战反激无PFC150W
由于是第一次发帖 希望各位大神尽量吐槽,点评,扔鸡蛋 、砸砖头(限金砖,不可以砸人)、小李不胜感激万分感谢!
做电源RD的,很多时候我们需要耐心、认真、细心、谨慎!
下面我就分享我一个最近做过的项目吧。
挑战反激无PFC150W
分享其它论坛的资料,觉得很好,这些资料也在后续的调试EMC中 使用了部分大招(以下内容源于其它电源论坛,一字不漏拷贝,如有疑问,能力范围内解释)
F1:保险管的寿命受输入浪涌电压和浪涌电流的双重影响,应该尽可能采用慢恢复型保险管,一般是按照最大输入电流的两至三倍选取。AC输入时,浪涌电压的影响可能要严重些。电池输入(低压),如果输入端抑制不足,浪涌电流对保险管的影响可能要严重些。AC输入时,在工业场合,浪涌电压也远比民用场合严重,这时防雷器件(参数及结构配置)的设计对保险管的影响尤其突出,必要时还要采用双(三)保险。相关设计过程可以参考专门针对防雷电路、浪涌电流抑制电路的设计文献。单保险管要接在L线上,且玻璃管引线封装最好增加一层热缩套管,并且在PCB板上标明容量。
RT1:热敏电阻的主要作用是抑制输入浪涌电流,RT1过大,发热严重。RT1过小,可能会影响到保险管和输入电解电容的寿命。输入冲击电流一般是硬性指标,选择RT1时一定要仔细的核实最大冲击电流限制值,如果没有给出这项要求,可以参考同等功率级别的其他类型产品。在全密封条件下,RT的发热可能会非常严重。另外,如果产品要求低温启动测试,RT阻值会变得相当大,很可能导致产品无法正常起机。
X电容:60W的产品,采用0.47uF的X电容,比较保险。换句话说,30W的产品,应该采用0.22uFX电容,120W的产品采用1uF的X电容。尽管这种方法没有什么科学依据,但是确实屡试不爽。如果你喜欢比较有挑战性的工作,那就另当别论了。X电容与Y电容不同,X电容容量大一点也不会让其他地方变得更加恶劣。在成本不是主要因素的情况下,对自己好一点,多留条活路。另外,在图①中,绝大部分人并不认可C4作用,此处存在了很大争议性。 Y电容:Y电容的配置有两个的,也有四个的;有102的,也有222、472的,有串磁珠的,也有串电阻的,只要EMI都能过,只要泄露电流没超,都是万岁!总之五花八门,千奇百怪。这也反映出人们内心对于Y电容充满深深的恐惧。其实Y电容并没有错,性能也较为优良,罪魁祸首都在于磁性材料(共模电感、变压器)及接地方式,后续分析。
MOV1:压敏电阻的计算方式并没有统一标准,一旦对实际情况估算错误(击穿电压偏低),反而会对产品造成严重的危害。在防雷要求不高的民用产品中,一般采用14K471居多,工业场合一般都在500V以上,如14K511,14K561等等。如果你不了解产品的真实用电环境(非居民小区用电),要尽量避免使用500V以下的压敏电阻。不同的行业,采取的防雷措施不尽相同,论坛上也讨论较少,一定要认真仔细的研究,特别是与多个保险管的配置方面。另外,配置防雷管后,耐压测试时往往会出现误动作,这也是让人头痛的问题。MOV1需要增加热缩套管。
DB1:小功率产品,选型比较简单。从散热的角度考虑,宽范围60W产品,整流器的最低规格不应该低于2A。在成本不苛刻的条件下,一般采用4A即可。 对于某些特殊场合,如存在瞬态高浪涌电压,整流器的规格应该进一步增大。有种情况很少见(但确实有存在),有部分工程师选择输入电解电容时,会选择超大的容量(可能是量不大,又是自家用),而浪涌抑制(热敏)电阻的规格却特别小。这时候强大的冲击电流会对保险管和整流器形成致命的威胁。专业的电源制造公司不会出现这种情况,而非专业制造商,在开发系统配套产品时,由于开发人员经验不足,又缺乏严谨的测试规范,而忽略这些潜在的隐患。
共模电感:上面分别给出了三种配置,方案①,这种配置比较多。我们经常看到的情况是:前级一个¢8~¢16的小磁环(30~1000uH),后级采用一个¢20~¢25的大磁环(15~30mH),前级作用在高频,后级低频,高低搭配刚好合适。方案②,这种情况也较为常见,前后两个一模一样的共模线圈,非常美观。采用这种配置时,为了保证较好的滤波效果(降低分布电容),每一级的电感量(匝数)不能太高。这样不仅会降低共模电感的分布电容,绕制工艺也会相对简单,而且美观,就是成本较高。方案③,一般对EMI要求较低的产品较多使用,低成本EE型共模电感最为常见。部分对成本要求苛刻的产品中,不少人也会采用单个¢18~25左右的磁环来设计,这需要开发人员具备足够的经验及技巧。共模电感的材质、形状、绕制工艺对滤波效果影响较大,而且EMI滤波元件配置与整机结构也有很大的关系。
很多人不晓得如何去计算共模电感值,下面是一种参考方法(适用于中小功率)。
100KHZ------30mH
1.0MHZ------3.0mH
10MHZ-------300uH
100MHZ------30uH
5.0MHZ------600uH
30MHZ-------100uH 在传导测试时,3*F,1MHZ,5MHZ,20~30MHZ这四个点容易出问题。
注:1、这种方法,只具有规律性,而没有科学性;
2、共模电感的材质、形状、绕制工艺对其滤波效果影响非常大;
3、共模电感不会饱和(对称绕制),但会产生较高的浪涌电压;
4、共模磁环,最好只绕两层,在磁环绕制工艺方面建议多下点功夫;
5、共模滤波的设计原则是如何让其更有效
对于整改EMC,X电容,Y电容,共模的感量设计真的很多是很实用的 还有雷击 浪涌 这个资料很好,实用~
版本0的X电容就是474+224,Y电容用的就是2个Y串联。
图片是调试的时候拍的,去年的事情了,版本0到此over,接下来开始版本1的调试及问题点。
版本1的散热片已经做了这样的处理,桥堆GBU封装 独立散热片 输出同步整流mosfTO-220封装 独立散热片 主功率mosf也是独立散热片 而且散热面积是如此的“奢侈”~~其结果还是如上图结果~
据版本残留物发现 之前有打样纯铜今的散热片来处理散热问题 可想而知 这个热问题是如此的棘手~
然而从温度数据可以发现 并不是只有加散热片的器件热 看看变压器 磁环 电解电容 限流电阻 还有其它 难道这在热设计分布不均匀或是均匀?
来不及处理验证这些问题的时候,公司另一个项目工程师有项目外出测试辐射(公司没有辐射仪),借此机会也一起外出测试一下 看看结果回来再做进一步处理。然而:(只上传最后测试的结果)
要不就是不过 要不就是余量不足~
当时项目开案的时候 因为某些原因 具体原因不详 后来案子处于呆滞状态 虽然呆滞 但是一有空余时间 还是马上分析处理问题。
从第三方测试机构回来后 拿着余量不足的机子 再次做了评估,如图 MOSF D极穿了电阻 还在D-S极加P 可想而知 这个温度会比之前还高 温度的测试已经不用多此一举了!