故障保护是所有电源控制器都有的一个重要功能。几乎所有应用都要求使用过载保护。对于峰值电流模式控制器而言,可以通过限制最大峰值电流来轻松实现这个功能。在非连续反向结构中,为峰值电流设置限制可最终限制电源从输入源获得的功率。但是,限制输入功率不会限制电源的输出电流。如果出现过载故障时输入功率保持不变,则随着输出电压下降,输出电流增加(P=V*I)。发生短路故障时,这会让输出整流器或者系统配电出现难以接受的高损耗。本文利用一些小小的创新和数个额外组件,为您介绍如何对一个简单的峰值电流限制进行改进,将电源变为一个恒定电流源,而非一个恒定功率源。
如何把电源的功率限制变为电流限制
全部回复(14)
正序查看
倒序查看
现在还没有回复呢,说说你的想法
@high-eff
图2显示了移动设备充电器所使用的一个5V/5W非连续反向电源的原理图。在范例中,我们使用了UCC28C44控制器,它是大多数经济型峰值电流模式控制器的代表,拥有功率限制功能。在非连续反向结构中,如果忽略效率影响,可使用方程式1计算负载功率(P)的大小。
在反向转换器内部,引脚1(COMP)的反馈电压与峰值电流比较。通过R15 检测该峰值电流,并使用R13 和C12 对其进行滤波。如果电流检测电压达到过1V,则单独过电流比较器终止脉冲。这种峰值电流限制方法与大多数脉宽调制(PWM)控制器中的功率限制过程一样。如果功率保持恒定不变,则可以将方程式1 改写为方程式2。在该方程式中,我们可以清楚地看到功率限制时输出电流同输出电压成反比。
0
回复
提示
@high-eff
[图片]
一些控制器还包含有一个第二级比较器。峰值电流高出第一级比较器时,第二级比较器跳闸断开。这种第二级比较器触发控制器完全关闭,并发起一个重启周期。设计这种额外保护级的目的是防止电源本身发生灾难性故障,例如:短路变压器绕组或者短路输出二极管。但是,涉及短路负载的大多数情况一般都不会超出该阈值。
图3 显示了输出和偏置电压与图2 所示电路负载电流的对比情况。输出V-I 特性非常接近于图1 所示理想情况。负载电流达到约1.3A 时开始功率限制。随着负载增加,输出电压开始下降。由于偏置电压是输出电压的反映,因此它也开始下降。偏置电压降至9V 关闭水平以下时,PWM控制器关闭。
0
回复
提示
@high-eff
在该例子中,尽管在负载超出1.3A时峰值电流限制激活,但是在转换器关闭以前负载电流会为额定负载的两倍以上。在某些应用中,这是不可接受的。反之,一种更加方形的V-I曲线则较为理想。负载增加超出功率限制点后偏置电压随之下降,利用这一特性,我们可以非常轻松地获得这种V-I曲线。只需增加数个组件,便可利用不断降低的偏置电压在功率限制期间折叠开关频率。这样做以后,开关频率被强制与输出电压成正比关系,如方程式3所示。将方程式3代入方程式2后我们发现,理论上讲功率限制期间输出电流不再依赖于输出电压的大小,参见方程式4. [图片]
用于创建这种改进型电流限制而增加的一些组件突出显示在图4 所示原理图中。对内部振荡器编程,通过R10、R8 和C11 设置反向转换器的开关频率。一个内部5V 源通过R10 和R8 对C11 充电。随着偏置电压下降,R7 和R11 的电阻分压器开启Q1,并优先于内部5V 源进行控制,从而降低开关频率。偏置二极管(D4)现在必须为一种双串联二极管,这样R7 和R11 才不会在启动期间使控制器的电流改道。需正确选择R7 和R11 的值,以便让Q1 在正常运行期间处于关闭状态,仅在偏置电压降至约12V 以下时才开启。
0
回复
提示