• 回复
  • 收藏
  • 点赞
  • 分享
  • 发新帖

【每日知识点get~】大牛多年研发电源问题汇总(1)

问题一:我们小功率用到最多的反激电源,为什么我们常常选择65K或者100K(这些频率段附近)作为开关频率?有哪些原因制约了?或者哪些情况下我们可以增大开关频率?或者减小开关频率?

开关电源为什么常常选择65K或者100K左右范围作为开关频率,有的人会说IC厂家都是生产这样的IC,当然这也有原因。每个电源的开关频率会决定什么?

应该从这里去思考原因。还会有人说频率高了EMC不好过,一般来说是这样,但这不是必然,EMC与频率有关系,但不是必然。想象我们的电源开关频率提高了,直接带来的影响是什么?当然是MOS开关损耗增大,因为单位时间开关次数增多了。如果频率减小了会带来什么?开关损耗是减小了,但是我们的储能器件单周期提供的能量就要增多,势必需要的变压器磁性要更大,储能电感要更大了。选取在65K到100K左右就是一个比较合适的经验折中,电源就是在折中合理化折中进行。

假如在特殊情形下,输入电压比较低,开关损耗已经很小了,不在乎这点开关损耗吗,那我们就可以提高开关频率,起到减小磁性器件体积的目的。

关键:如何选择合适IC的开关频率?主流IC的开关频率为什么是大概是这么一些范围?开关频率和什么有关,说的是普遍情况,不是想钻牛角尖好多IC还有什么不同的频率。更多的想发散大家思维去注意到这些问题!

我这里想说的普遍情况,主要想提的是开关频率和什么有关,如何去选择合适开关频率,为什么主流IC以及开关频率是这么多,注意不是一定,是普遍情况,让新手区理解一般行为,当然开关电源想怎么做都可以,要能合理使用。

1、你是如何知道一般选择65或者100KHZ,作为开关电源的开关频率的?(调研普遍的大厂家主流IC,这二个会比较多,当然也有一些在这附近,还有一些是可调的开关频率)

2、又是如何在工作中发现开关电源开关频率确实工作在65KHZ,或100KHZ的。(从设计角度考量,普遍电源使用这个范围)

3、有两张以上的测试65KHZ100KHZ频率的图片说明吗?(何止二张图片,毫无意义)

4、你是否知道开关电源可以工作在1.5HZ.(你觉得这样谈有必要,工作没有什么不可以,纯熟钻牛角尖,做技术切记钻牛角尖,那你能谈谈为什么普遍电源不工作在1.5HZ,说这个才有意义,你做出1.5HZ的电源纯属毫无意义的事情)

提醒:做技术人员切记钻牛角尖,咱们不是校园研究派,是需要将理论与实践现结合起来,做出来的产品才是有意义的产品!


问题二:LLC中为什么我们常在二区设计开关频率?一区和三区为什么不可以?有哪些因素制约呢?或者如果选取一区和三区作为开关频率会有什么后果呢?

LLC的原理是利用感性负载随开关频率的增大而感抗增大,来进行调节输出电压的,也就是PFM调制。并且MOS管开通损耗ZVS比ZCS小,一区是容性负载区,自然不可取。那么三区,开关频率大于谐振频率,这个仍是感性负载区,按道理MOS实现ZVS没有问题,确实如此。但是我们不能忽略副边的输出二极管关断。也就是原边MOS管关断时,谐振电流并没有减小到和励磁电流相等,实现副边整流二极管软关断。这也是我们通常也不选择三区的原因。

我们不能只按前人的经验去设计,而要知道只所以这样设计是有其必然的道理的!


问题三:当我们反激的占空比大于50%会带来什么?好的方面有哪些?不好的方面有哪些?

反激的占空比大于50%意味着什么,占空比影响哪些因素?第一:占空比设计过大,首先带来的是匝比增大,主MOS管的应力必然提高。一般反激选取600V或650V以下的MOS管,成本考虑。占空比过大势必承受不起。

第二点:很重要的是很多人知道,需要斜坡补偿,否则环路震荡。不过这也是有条件的,右平面零点的产生需要工作在CCM模式下,如果设计在DCM模式下也就不存在这一问题了。这也是小功率为什么设计在DCM模式下的其中一个原因。当然我们设计足够好的环路补偿也能克服这一问题。

当然在特殊情形下也需要将占空比设计在大于50%,单位周期内传递的能量增加,可以减小开关频率,达到提升效率的目的,如果反激为了效率做高,可以考虑这一方法。


问题四:反激电源如果要做到一定的效率,需要从哪些方面着手?准谐振?同步整流?

反激的一大劣势就是效率问题,改善效率有哪些途径可以思考的呢?减小损耗是必然的,损耗的点有开关管,变压器,输出整流管,这是主要的三个部分。

开关管我们知道反激主要是PWM调制的硬开关居多,开关损耗是我们的一大难点,好在软开关的出现看到了希望。反激无法向LLC那样做到全谐振,那只能朝准谐振去发展(部分时间段谐振),这样的IC也有很多问世,我司用的较多是NCP1207,通过在MOS管关断后,下一次开通前1脚检测VCC电压过零后,然后在一个设定时间后开通下一周期。

变压器的损耗如何做到最小,完美使用的变压器后面问题会涉及到。

同步整流一般在输出大电流情况下,副边整流流二极管,哪怕用肖特基损耗依然会很大,这时候采用同步整流MOS替代肖特基二极管。有些人会说这样成本高不如用LLC,或者正激呢,当然没有最好的,只有更合适的。


问题五:电源的传导是怎么形成的?传导的途径有哪些?常用的手段?电源的辐射受哪些东西影响?怎么做大功率的EMC。

电源传导测量方式是通过接收输入端口L,N,PE来自电源内部的高频干扰(一般150K到30M)。

解决传导必须弄清楚通过哪些途径减弱端口接收到的干扰。

49886517_1

49886517_2


如图:一般有二种模式:L,N差模成分,以及通过PE地回路的共模成分。有些频率是差共模均有。

通过滤波的方式:一般采用二级共模搭配Y电容来滤去,选择的方式技巧也很重要,布板影响也很大。一般靠近端口放置低U电感,最好是镍锌材质,专门针对高频,绕线方式采用双线并绕,减少差模成分。后级一般放置感量较大,在4MH到10MH附近,只是经验值,具体需要与Y电容搭配。X电容滤差模也需要靠近端口,一般放在二级共模中间。放置Y电容,电容布板时走线需要加粗,不可外挂,否则效果很差。(这些只是输入滤波网络上做文章)

当然也可以从源头上下手,传导是辐射耦合到线路中的结果,减弱了开关辐射也能对传导带来好处。影响辐射的几处一般有MOS管开通速度,整流管导通关断,变压器,以及PFC电感等等。这些电路上的设计需要与其他方面折中不做详述。

一些经验技巧:针对大功率的EMC一般需要增加屏蔽,立竿见影,屏蔽的部位一般有几处选择:

第一:输入EMI电路与开关管间屏蔽,这对EMC有很大的作用,很多靠滤波器无效的采用该方法一般很有效果。

第二:变压器初次级屏蔽,一般设计变压器若有空间最好加上屏蔽。

第三:散热器的位置能很好充当屏蔽,合理布板利用,散热器接地选择也很重要。

第四:判断辐射源头位置,一般有几个简单的方法,不一定完全准确,可以参考,输入线套磁环若对EMC有好处,一般是原边MOS管,输出线套磁环若对EMC有效果,一般是副边输出整流管,尤其是大于100M的高频。可以考虑在输出加电容或者共模电感。

当然还有很多其他的细节技巧,尤其是布板环路方面的,后面对LAYOUT会单独讲解。


问题六:  我们选择拓扑时需要考虑哪些方面的因素?各种拓扑使用环境及优缺点?

设计电源的第一步不知道大家会想到什么呢?我是这么想,细致研究客户的技术指标要求,转换为电源的规格书,与客户沟通指标,不同的指标意味着设计难度和成本,也是对我提出的问题有很大的影响,选择拓扑时根据我们的电源指标结合成本来考虑的,哪常用的几种拓扑特点在哪呢 ?

这里主要谈隔离式,非隔离式应用有限,当然也是成本最低的。

反激特点:适用在小于150W,理论这么说,实际大于75W就很少用,不谈很特殊的情况。反激的有点成本低,调试容易(相对于半桥,全桥),主要是磁芯单向励磁,功率由局限性,效率也不高,主要是硬开关,漏感大等等原因。全电压范围(85V-264V)效率一般在80%以下,单电压达到80%很容易。

正激特点:功率适中,可做中小功率,功率一般在200W以下,当然可以做很大功率,只是不常常这么做,原因是正激和反激一样单向励磁,做大功率磁芯体积要求大,当然采用2个变压器串并联的也有,注意只谈一般情形,不误导新人。正激有点,成本适中,当然比反激高,优点效率比反激高,尤其采用有源箝位做原边吸收,将漏感能量重新利用。

半桥:目前比较火的是LLC谐振半桥,中小功率,大功率通吃型。(一般大于100W小于3KW)。特点成本比反激正激高,因为多用了1个MOS管(双向励磁)和1个整流管,控制IC也贵,环路设计业复杂(一般采用运放,尤其还要做电流环)。优点:采用软开关,EMC好,效率极高,比正激高,我做过960W LLC,效率可达96%以上(全电压)(当然PFC是采用无桥方式)。其它半桥我不推荐,至少我不会去用,比较老的不对称桥,很难做到软开关,LLC成熟以前用的多,现在很少用,至少艾默生等大公司都倾向于LLC,跟着主流走一般都不会错。

全桥:一般用在大于2KW以上,首推移相全桥,特点,双向励磁,MOS管应力小,比LLC应力小一半,大功率尤其输入电压较高时,一般用移相全桥,输入电压低用LLC。成本特别高,比LLC还多用2个MOS。这还不是首要的,主要是驱动复杂,一般的IC驱动能力都达不到,要将驱动放大,采用隔离变压器驱动,这里才是成本高的另一方面。

推挽:应用在大功率,尤其是输入电压低的大功率场合,特点电压应力高,当然电流应力小,大功率用全桥还是推挽一般看输入电压。变压器多一个绕组,管子应力要求高,当然常提到的磁偏磁也需要克服。这个我真没用过,没涉及电力电源,很难用到它的时候。


找槽点,来吐槽

文章来自互联网,欢迎大家跟帖讨论~~~~~~

全部回复(2)
正序查看
倒序查看
lxgmvp
LV.7
2
2018-03-15 17:26
顶一个,好的总结
0
回复
嘉庆
LV.1
3
2018-03-17 11:36
必须顶
0
回复