澳大利亚电池技术股份有限公司上海办事处代表 赵铁良
摘要:通过电动自行车使用的阀控密封式铅酸蓄电池主要的失效分析,探讨了降低电池失效率采取一些有效的方法,实现电动自行车铅酸蓄电池保用2年的梦想.
前言
对于电动自行车来说,发展势头异常迅猛.几乎没有那个产品的发展速度能够赶上电动自行车的发展.与其他产品不同的是近几年每年的实际产量都超过社会保有量.所以新增用户多于老用户.这样,用户多数处于“幼稚状态”.所以,很多用户也比较关心车的外形和速度等等性能.经过用户数年的使用,发现电池问题是购买电动自行车以后最大的消费.这样,由关心电动自行车的外形、速度开始逐步的转向关心电池的寿命.并且最大的用户抱怨也是对电池的寿命不满.因此,提高电池寿命的问题也越来越重要.特别是电摩的出现和发展,这种没有身份的车正如预期的那样,电池仅仅维持3到6个月的寿命,这样,电池寿命问题几乎称为这个车种的死结.多种多样的“长寿命电池”,延长电池寿命的充电器层出不穷.但是,几乎都没有达到预期效果.一些电池制造商曾经不断的突破保用时间,但是,基本上以失败而告终,甚至一些电池制造商损失惨重,逐步淡出电动自行车配件供应商的行列.人们似乎对此已经开始丧失信心,认为电动自行车的电池寿命也就是一年而已,再探讨延长电池寿命是徒劳无益的.而一些后来者仍然看到其巨大的市场商机,不惜继续打出招牌,突出的就是提出电摩电池的寿命也保用一年的做法.而凡是当时提出电摩电池保用一年的电池供应商无一不食言.因为电摩电池保用一年,几乎等于买一组电池最少要赔一组电池.无论那个电池制造商也无法承担这样的重负.这样,电池保用15个月、保用18个月的说法在本届上海国际自行车展中销声匿迹了.电池保用2年,几乎成为业界可望不可及的梦想.一些车厂干脆就说,即便电池能够使用2年,也应该保用一年,以次来掩饰电池寿命不理想这样个无可奈何的现实.这样,又为电池寿命的发展制造理论障碍.其实,无论电池保用一年还是二年,降低电池的用户费用消耗,始终应该是车厂孜孜以求的目标.
那么如何提高电池的寿命,如何改进电池的的使用环境等等问题都是大家非常失望又关心的问题.为了弄清楚延长电池寿命的途径,首先就要弄清楚电池的失效机理,以便对症下药.
一 电动自行车电池的失效现象和原因
与其它铅酸蓄电池的使用环境不同,电动自行车电池的失效原因有其特殊性.电动自行车的电池的循环次数远远多后备电源类的电池.例如,原邮电部[1994]763号电信网维护规程的规定,每年应以实际负荷做一次核对性放电试验,放出容量的30%~40%.每3年做一次容量试验,到使用6年以后,每年做一次容量试验.这样,电信的电池如果不是频繁的出现停电,电池很少处于放电状态.假定每年遇到4次停电,这样,在10年间电池放电也就是40次,所以电池的深循环寿命定为80次.同时,电信系统的电池放电深度也就是按照30%~40%.而电动自行车使用的电池依据标准,电池的寿命应该是按照70%标称容量的放电要达到350次.这样,电动自行车电池的放电深度和循环寿命远远超过电信系统的电池要求.另外,电动自行车电池要求在8小时以内完成充电.这样,不得不提高充电的电压值,超过了电池的大量析气电压2.42V而形成了较块速度的失水.而电信系统的电池是完全没有这样高的充电电压的.同时,电动自行车电池的放电电流很大,就是巡航期间的放电电流也接近于0.5C放电,启动的时候,放电电流会超过1C放电的.这样,也在影响电池的使用寿命.由于电池特性的特殊要求,我们看到一些可以给核电站供应铅酸蓄电池的制造商也没有步入电动自行车电池供应商的行列.一些规模可观的电池制造商也逐步退出了电动自行车电池供应商的行列.而给电动自行车供货的电池制造商除了沈阳松下以外,就没有几个成规模的电池制造商.虽然沈阳松下供应的电池的初期容量相对最低,按照行业标准检验,其容量在合格与不合格之间,但是,其寿命相对比较长.
这样,电动自行车使用的电池的性能要求与传统的密封电池不同,失效模式与传统的电池失效模式存在很大的差异.出现了一些过去少见的失效模式和失效比例.
一个主要的区别是放电率的差异.普通的阀控密封式铅酸蓄电池的放电率多数是以10小时率或者20小时率来制定的,而电动自行车的电池都是以2小时率或者3小时率来制定的,这与电池的实际使用情况大体相当.所以,在供应电动自行车电池的初期,电池容量是最大的问题.为了提高电池的容量,各个电池制造商采取了多种方法.以大量使用的10Ah电池为例,最典型的方法如下:
1、 增加极板数量.
把原设计的单格5片6片改为6片7片,7片8片,甚至8片9片.靠减薄极板厚度和隔板,增加极板数量来提高电池容量.
2、 提高电池的硫酸比重.
原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右.只有极少数的采用1.32的比重.
3、 增加正极板活性物质用量.
4、 低温固化,增加β氧化铅的比例.
一般密封电池为了实现氧循环,都要求做好负极过度.增加正极板活性物质用量,可以提高电池的容量,是以降低氧循环为代价的.
通过这些主要措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性,延长了电池大电流放电的寿命.但是,这些措施也制约着电池寿命.
首先,电池的失效模式与电信使用的浮充电池的失效模式差别很大.电池失水上升到第一位.
产生电池失水的一些原因主要如下:
1、 为了满足电池在8小时以内充满电,所以在三段式恒压限流充电中,不得不通过恒压值,达到折合单格电池电压为2.47V~2.49V.这样,大大超过电池正极板析氧电压的2.35V和负极板析氢电压的2.42V.一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补.这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧.而电池的氧循环又不好,这样在浮充阶段也在不断的排气.
2、 一些电池制造商没有找到好的板栅合金,仍然采用低锑合金,这样,比铅钙系列的板栅合金析气电位低,电池出气量大,失水相对严重.
3、 增加极板和增加正极板活性物质用量以后,负极过渡不足,氧循环下降,充电过程中正极板的氧气来不及被负极板吸收,而产生失水.
4、 一些电池的开阀压偏低,容易排气,同时电池内部的氧分压低,降低了氧循环能力,增加了析气量.
5、 由于电池的硫酸比重相对高了很多,所以,电池的硫化也相对严重.电池放电以后到第二天充电以前,硫酸比重高的电池的硫化明显.这样,更加降低了负极板氧循环的能力.而失水以后的电池,失去的主要是水,留下了硫酸的成分,相当于进一步提高了硫酸的比重,这样就使电池更加容易硫化.所以,电池的硫化加重了失水,失水又加重了硫化.
为了克服电池的失水,一些电池制造商采取了不少措施.
在板栅合金方面,一些电池制造商采用了多种方式,去掉了低锑合金而采用铅钙锡铝合金.提高了电池析气电压.同时,缓解了铅钙合金的析钙问题,克服了铅钙合金的早期容量损失的意外容量下降.同时,还要解决大电流放电特性下降的问题.
令人遗憾的是,山东某电池制造商采用军工技术,做出了铜网电池,试验结果证明,其各项参数都非常优秀,但是,可能因为成本问题,没有见到他们大批量生产和推广.
一些电池制造商改进了电池塑料模具的结构尺寸,增加了电池的开阀压,降低了电池开阀压的离散性,改善了氧循环.
最重要的一个进步就是采用抗失水的胶体电池结构,大大的改善了氧循环.同时,也出现了胶体电池容易热失控的故障.
为了缓解电池的失水和热失控,一些电池制造商要求充电器制造商降低恒压值.但是,简单的降低恒压值,没有降低恒压转浮充的电流,电池难免发生欠充电累积,形成电池容量下降.
有创意的是一些电池制造商面临着电池失水,采取了一些措施,在全国设立了补水站,电池也为补水改进了结构.利用修旧利旧,使平均8个月的电池寿命延长到平均13个月.
为了改善胶体电池的热失控,最近市场上开始见到一些“半胶体电池”,就是在灌酸的后期,在电池上面再增加胶体.这样,相当于给普通的AGM隔板电池增加了一层弹性的气密隔离,增加了隔板之间的气体压力,改善了氧循环.同时,比胶体电池的局部压力小,平均压力不小.这样克服了局部高气压,缓解了氧循环产生局部高热.其结果是:氧循环好于普通AGM隔板电池,热失控低于胶体电池,而材料成本也低于胶体电池.
其次是电池的硫化问题.
在解剖失效电池中,单纯硫化失效的电池不是很多,但是,几乎所有的电池都不同程度的存在着硫化.一些电池在做70%的1C充电和60%的2C放电中,由于采用连续大电流循环,破坏了电池生成大硫酸铅结晶的条件,所以可能看不到硫化对电池的破坏.如果试验中途停顿,电池硫化的问题就会显现.由于电池重量大,一些用户经常采取电池经过多次使用放完电才再次充电,这样电池放电以后没有及时充电,电池的硫化就比较严重.另外,电池的硫酸比重比较高,也是硫化的重要因素.而电池的硫化,破坏了负极板氧循环的能力,形成更加容易失水.这样,电池的硫酸比重更加高,导致更加容易硫化.所以,电池硫化的程度可能不同,但是对电池的寿命影响也是不可忽略的.
第三是漏酸问题.
在电池密封和排气阀没有问题的时候,也会出现漏液.很多电池在灌酸以后,电池处于富液状态,电池没有氧循环.靠电池处于开口状态的三充二放把多于的电解液排出.硫酸比重再次提高.在盖排气阀的时候,电解液没有吸光,还存在游离酸.即时把游离酸吸光,电池还是处在“准贫液”状态.隔板中的电解液相对要多一些.而隔板中稍多的电解液影响氧循环,这样,对新电池进行充电的时候,排气量比较大,代出的硫酸比较多.形成“漏酸”.而胶体电池前50~100个循环,电池处于富液到贫液的转换期,排气比较严重,排气代出胶体微粒形成了“漏酸”.
第四是正极板软化问题.
正极板活性物质的有效成分是氧化铅,氧化铅分α-PbO2和β-PbO2,其中,α-PbO2是活性物质的骨架,容量比较小;β-PbO2依附α-PbO2构成的骨架上面,其荷电能力比α-PbO2强很多.氧化铅放电放电以后输出硫酸铅,充电时硫酸铅生产氧化铅.而充电的时候,在强酸环境中只能够生成β-PbO2.所以电池深放电以后,一旦具有骨架作用的α-PbO2参与放电生成硫酸铅以后,就再也不能够恢复成为α-PbO2,而充电只能生成β-PbO2.正极板软化就出现了.正极板一旦出现软化,起到支持作用的多孔结构被破坏了,正极板的多孔被电池极板的压力压实了,就降低了参与反应的真实面积,电池容量就下降了.这样,防止过放电就是控制正极板软化的重要措施.而这个靠的是控制器的欠压保护.如果欠压保护电压过低,电池就会出现过放电,一些α-PbO2参与放电,就会出现正极板软化.
放电的时候,如果连续放电电流比较大,深层的β-PbO2来不及参与放电反应,外层的α-PbO2就要参与放电反应,这样,也会形成正极板软化.所以控制器中的限流参数也浮充重要.电摩的放电电流相对比较大,差不多在1C左右放电,加上放电深度相对比较深,所以非常容易产生正极板软化.
每次放电,或多或少的总要有一点点α-PbO2参与反应.所以,一个正常使用的电池,在不失水也不硫化,也没有过放电的情况下,电池的寿命就取决于正极板软化.
第五就是电池均衡问题.
电池不均衡主要有2中表现形式,其一是某单只电池容量低,其二是电池荷电容量低.第二种情况是说该电池的容量并不抵,但是该电池没有充慢电.第一种情况是该电池放电的时候,提前反应电压下降的快,充电的时候电压上升也快.第二种情况是充电荷放电电池的电压都低.
其缩短电池寿命的原因如下:
1、 充电时电压高的电池会增加失水,电压低的电池会欠充电;
2、 放电的时候,电压低的会出现过放电,形成电池正极板软化.
这样,容量低的电池在每次放电的时候放电深度比其他电池深度深,所以正极板软化的快.二充电电压高的失水,充电电压低的欠充电.如果一只电池荷电少,就存在充电少,放电深的问题.这样该电池就会同时产生正极板软化荷硫化的问题.
产生电池不均衡的原因如下:
1、 对串连电池组的组配不好,存在着容量差和开路电压差,这是原始就有误差的问题;
2、 电池开阀压有差别,失水不同,形成后天电池的容量差;
3、 电池的自放电不同,逐步形成荷电容量的差异;
4、 失水不同,形成电池实际的硫酸比重不同,形成开路电压差;
5、 电池寿命差,在后期反应一只电池容量下降,影响其他电池的正常状态.
要改进电池的不均衡问题,首先就要改善电池在制造期间的工艺一致性问题.这也是国内多数电池制造商的主要问题.例如,最好的电池制造商的板栅是采用压铸的,而国内相当多的电池制造商连铸板机都没有,还是手工浇铸.
第六是热失控.
密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”.这样,电池的失水很少,实现了“免维护”,就是免加水.为此,都要求负极板容量做的比正极板容量大一些,叫做负极过渡.
电池在充入电量达到70%以后,电池的极化电压相对比较高,充电的副反应开始逐步增加.电解水开始了.在充电的单格电压达到2.35V以后,首先正极板析氧,在达到2.42V以后,负极板开始析氢.这时候充电的电能转变为化学能减少,转变为电解水的能量增加.充电过程的是否析气取决于充电电压,析气量取决于达到析气电压以后的充电电流.所以,在充电过程中,充电电压在进入恒压以后,电压开始接近于最高,充电电流也保持限流值.这时候析气量最大.在进入恒压以后,充电电流应该逐步下降,析气量也应该逐步下降.
充电本身是放热反应,一般电池的热设计是可以控制温升的.在电池大量析气以后,氧气在负极板复合为水,发热量远远大于充电时的发热.密封电池希望负极板具有良好的氧循环能力,但是,氧循环也会产生发热.所以,氧循环是一把双刃剑,好处是减少了水损失,坏处是电池会发热.
如果电池发热,在恒压充电的条件下,氧循环电流也参与了充电电流,所以充电电流下降速率下降.而电池发热,会引起充电电流下降速率降低,甚至会引起电流反升.而充电电流在电池发热的作用下,一旦电流反升,又增加了发热.这样,充电电流一直会上升到限流值.电池发高热,并且积累热,一直到电池外壳发生热软化变形.而电池的热变形时,内部气压高,所以呈现电池时鼓胀的.这就是电池热失控而损坏电池.电池一旦出现严重鼓胀,漏酸和漏气的问题也出现了,电池会出现急性失效.
诱发电池鼓胀的原因有很多.如果充电电压高,析气量大,会产生热失控.如果某一组电池或者某一个单格电池发生严重落后,而充电的恒压值不变,其他的单格电池也会出现充电电压相对过高,也会产生热失控问题.
第七是电池异常故障
为了增加电池的容量,目前电动自行车电池的隔板相对比其他电池的隔板薄一些,负极板的硫酸铅结晶长大,充电以后出现少量硫酸铅遗留在隔板中,遗留在隔板中的硫酸铅一旦被还原称为铅,积累多了,电池就会出现微短路.这种现象叫做“铅枝搭桥”.产生这种微短路,轻的产生该单格电压落后,严重的时候会出现单格短路.这种现象不仅仅出现在胶体电池中,在普通的AGM电池中也会出现.一旦出现电池的单格严重落后,电池还很容易出现热失控现象.
还有就是极群组装虚焊问题.容易产生虚焊的地方是极板.而每个电池的单格有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个电池组成,就要270个焊点.如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,形成整个电池都落后,电池就会形成严重的不均衡.就会使改组电池提前失效.如果虚焊率达到万分之一,平均每37组电池就有一组电池存在这虚焊,这是绝对不能够允许的.而铅钙合金的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿还采用低锑合金的板栅而没有采用简单的铅钙合金.
二、延长电池使用寿命的一些方法
延长电池的使用寿命需要采用一系列整体的措施.
首先是需要对车的处理.
首先,整车行驶时的电流对电池寿命至关重要.如电摩的电池,放电电流经常接近1C,甚至超过1C,这样的电池寿命难以达到很长.
可能一些电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验.经过这样的寿命试验,电池寿命达到350次的电池很多,但是使用在电摩上的效果相差甚远.其原因是多种多样的,一个最关键的原因是,电摩每次放电的深度可能要超过60%;另外就是放电以后,并不能够在30分钟以内进行充电,电池存在这硫化.这就是电摩电池与试验结果相差甚远的主要原因.
所谓简易型的车的电池寿命相对来说比较长,其实就是车轮直径大,车重轻,电池负担轻.而一些车采用了无刷电机或者高速电机,其电流更小.这样的车的20公里时速巡航时的电流也就是4A左右,这种车的寿命相对比较长.而一些车的车轮直径小,电机效率没有做上来,靠增加电流来保证车速,特别是一些轻摩化的车,车重增加到50kg以上,行驶的电流增加很大,在20公里巡航时的电流接近6A甚至更大.这样影响的不仅仅时续行能力,而且在同样续行要求下电池放电深度增加了50%,电池也是容易在深放电的条件下运行,电池寿命自然要短.所以车重对续行能力有影响,对电池寿命影响很大.
另一个问题据说限速问题.大多数车的控制器都留了一个线损插头,并且很多经销商以去掉限速来招揽顾客.一些车厂干脆就去掉限速出厂.这样的车的电流也过大,导致电池寿命下降.
一些车厂采用的控制器问题很多.就维修车来说,奇怪的是很多车的欠压保护电压都等于31.5V.这样,每次车显示欠压的时候,电池已经过放电.其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤缺少非常大的,多数出现容量下降5%左右.只要出现这样的情况10次,电池的容量多数都低于标准要求的70%标称容量.另外,一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大.而大多数车的说明书没有给用户以警示.
另外,欠压保护采取什么电压为好?目前多数车采用的是32V±0.5V.应该看到,多数电池在放电到31.5V的时候,由于电池存在容量差,此时往往会有一个电池电压低于10.5V,该电池处于过放电状态.而其他电池还没有达到11V.这时候,过放电的电池容量急剧下降,对电池的损伤影响的不仅仅是该单只电池,而且会影响整组电池的寿命.所以我建议:对于标称36V的欠压保护应该选32.5V±0.5V, 对于标称24V的欠压保护应该设在21.5V~22V,对于标称48V的应该设在44V~45V.这样的电压对续行能力仅仅少不到1公里,但是对电池的寿命的影响很好.
目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的.在价格竞争中,几乎没有一个产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪.最近,看到一种全部采用SMD(贴片)元件的控制器,并且在出厂以前采用固定电阻来调试,并且采取环氧树脂灌封的控制器,该控制器的可靠性非常高,可是价格没有明显的增加,这样的控制器的结构可以保证不会出现任何漂移.所以采用这样的结构,对延长电池寿命也非常有好处.
网友可以参看日本的车,轮径大,轻便,几乎没有一个多余的装饰件.我最近刻意在JSX那里调查用户需求,一些买第二台车的用户确实是在偏爱轻便型的车.可见随着用户的逐渐成熟,买笨拙车的用户将会下降.
其次是电池质量问题.
就电池来说,业界公认寿命最长的是沈阳松下电池.松下电池的特点是什么?为什么都在中国大陆,其他企业无法完成这样的电池,唯独有松下电池独步天下?
我国目前的电池的结构,包括松下电池在内,基本上是适合浅循环的浮充电池发展而来的.其结构上没有按照深循环的规律要求去改造.而浅循环电池的深循环寿命做到80次循环就绰绰有余了,而市场希望电动自行车的电池能够做到800次深循环才好.可是目前电池的结构已经决定了,这个目标是难以达到的.为了适应深循环,国内对电池做了适应性的改动.这些改动是:
1、 为了提高电池的容量,同时适合大电流放电,采用了增加极板的发生.例如,松下电池坚持采用11片极板,而国内多数企业采用15片极板,甚至有的企业采用17片极板.这样,极板,隔板都减薄了.正极板的活性物质用量增加了,电池的初期容量上去了,大电流特性改善了,但是负极过渡减少了,氧循环变差了,失水增加了.
2、 提高电解液的比重也有利于增加电池的初期容量,但是,硫化和正极板软化也增加了,也影响电池的寿命.
3、 隔板减薄了,硫酸的贮存减少了,失水导致电池失效的概率增加了,同时,电池的微短路和铅枝搭桥的概率增加了.
松下电池没有完全按照这个方法改动,其硫酸比重依然是按照1.28来做的,其极板仍然采用11片(最近发展为13片),其固化温度也没有降低到50℃,正极板活性物质用量也没有大幅度的增加.该电池的初期容量也仅仅是合格而已,不像国产其他电池那样,做的比标称值大10%~25%.在我测量的电池中,甚至有5A放电接近170分钟的,这样的电池的容量高达14Ah,比标称值增加了40%,测量这个电池的密封反应效率不合格.也就是说,该电池失水会更加严重.而松下电池的初期容量按照电动自行车的行标来说在合格和不合格之间,新型电池也就是刚刚合格而已.但是寿命可以做到很长.
产生这个问题的原因就是很多车厂没有对电池的寿命开展试验.我看过很多车厂,对电池唯一的检验方法就是装车以后跑圈.这样的检验方法其实就是检验了电池的初期寿命而已,对电池的寿命是完全没有考核的.那么,如果真的按照松下电池那样完成了长寿命的设计,也会因为车厂采用跑圈的电池检验方法而被淘汰的.对此,应该说行协在发展电动自行车初期搞的三届里程赛推动了电池有浮充型向动力型的改善,但是留下的副作用为害到今天.今天,针对消费者的投诉情况,似乎应该开展电池深循环寿命竞赛了.而这个竞赛的方法应该是市场抽样计成绩,送样的计寿命,不计成绩.
不少电池在单体测试中,可以获得比较好的结果,但是,对于串连电池组来说,其寿命明显下降.产生这种现象的重要原因就是串连电池组的配组问题.所以在电池质量中一个非常重要的问题.电池配组一般应该注意的是:
1、 电池工艺状态的配组;
电池的工艺状态不同,电池的失效模式也不相同.多数电池制造商没有人工气候调整条件,生产的工艺也要不断的调整,失效模式也略有差异.而这个差异将在串连电池组中被扩大,最终形成提前失效.
2、 电池容量的配组;
3、 电池开路电压的配组;
4、 电池荷电状态的配组.
第三,充电器问题.
业界广为流传的一句话就是:电池不是用坏的,是充坏的.发生这种现象的第一个重要原因就是消费类产品价格因素的制约;第二个的原因就是从事电化学的和从事电子学的缺少沟通;第三个原因是缺少从电化学和电子学联合的失效分析;第四个原因是对用户的使用情况和要求分析不足.
我曾经向一些从事电化学的同行问过,如果说电池是充坏的,为了避免充坏,能否提出一个好的充电模式来,即能够保证电池的寿命,又能够满足用户的要求,电子工程师是可以实现任何充电模式的.就充电的恒压值问题,我就多次问过从事电化学行业的同事,他们众说纷纭,始终摇摆不定.例如,恒压值高了,保证了充电时间,但是牺牲的是失水和热失控.恒压值低了,充电时间和充入电量又难以保证.所以,我认为,不仅仅是充电器没有做好,而是还不知道如何做好.
还有一些现象,掩盖了真相.例如,多数电池制造商和充电器都说车厂因为价格因素不接受好的但是可以保证电池寿命的充电器.应该承认,这是大多数小企业是如此,但是,有发展的、规模性企业确实在出高价也买不到好的充电器.一些充电器制造商把某写功能夸大,成品的功效没有其宣传的那样好.还有不少功能是属于卖概念的功能,实效有限.
那么如何在电池和车都保证的条件下,如何提高充电器的功能,确保电池的寿命呢?基本方法如下.
首先就是充电的最高充电电压或者恒压值要降下来.
降低充电最高电压的意义在于:
——降低失水;
——减少大量析气对正极板的冲刷,缓解正极板软化;
——保持电解液的硫酸比重不再提高,缓解电池硫化.
实现最高充电电压工作在大量析氧,但是没有大量析氢的状态.在改善电池的电池板栅合金、提高析气电位、改善氧循环性能,提高密封反应效率的基础上,控制充电最高充电电压在2.42V以下,也就是在析氢电位以下.这样做必然会导致充电时间的延长,这就必须在大电流充电(限流充电)的状态下,加入去极化的负脉冲,改善电池的充电接受能力,在大电流充电的时候多充入一些电量,缩短补足充电时间.
其次,需要对最高充电电压进行温度补偿.
温度补充偿的意义在于:
——解决电池夏季过充电、冬季欠充电的矛盾;
——缓解电池在高温环境中的热失控损坏.
到目前为止,看到一些采用模拟的方法实现温度补充的充电器普遍存在着模拟误差较大的问题.同时,在充电器内部模拟电池的温度的差异比较大.可能在某个温度的差异不大,但是在环境温差变化比较大,在通风状态差异比较大的时候,就产生模拟状态与实际状态的差别过大的问题.所以,还是推荐采用测量电池温度或者强制风冷,数字化测量环境温度的方法.
第三,采取抑制硫化的措施.
电池硫化的可能性在于:
——电池放电以后不能够及时充电,再次期间形成稍大的硫酸铅结晶.这种现象发生与所有的深放电的电池,并且在电池放电12小时以后就可以找到大硫酸铅结晶;
——深循环电池的硫酸比重相对比较高,消除容易产生硫化的条件;
——负极过度的密封铅酸蓄电池,在100%充电以后,还会有不少的硫酸铅结晶没有得到还原,形成了产生大硫酸铅结晶的“晶种”,其他条件一旦具备,非常容易形成大的硫酸铅结晶;
——正极板容量下降以后,负极板也不能够完全还原,形成硫酸铅结晶逐步长大的条件.
由此看见,任何深循环电池在正常使用中,是无法避免完全产生大的硫酸铅结晶,也就是电池硫化的可能.而电池一旦出现硫化,不仅仅会使电池的负极板容量下降,也会加重失水和正极板软化,对整个电池的寿命形成影响.
现在流行一种电池快速寿命测试方法,就是采用1C电流充入70%的电量,采用2C电流放出60%电量,来考核电池深循环寿命.70%的2C电流充电,是电池在充电接受能力比较大的时候,对电池采用大电流充电,对电池的损伤比较小.电池基本上没有高于严重析氢电压.一旦高于析氢电压,电池也会快速的失水.这个试验,必须采用连续充放电,如果数次中途停电几天,电池也会产生比较严重的硫化而提前失效.而用户使用电池,是无法保证每次使用以后,都能够及时充电的,一年以内发生数次没有及时充电的情况,电池的硫化就会积累,而积累的硫酸铅结晶就会形成“晶种”而逐渐长大.
抑制和消除电池硫化的方法很多,其中,采用高电压大电流充电,使大的硫酸铅结晶产生负阻击穿的方法来溶解的方法使快速消除硫化的便捷方法.试验中发现,这种消除硫化的方法是可以获得暂时的消除硫化的效果,但是,也会在消除硫化中带来加重失水和正极板软化的问题,对电池带来寿命上的损伤.
比较好的方法还是采用快速的脉冲前沿的充放电脉冲,利用其高次谐波与大的硫酸铅结晶谐振的方法,在充电过程中消除电池的硫化.利用这种方法来消除电池的硫化,做得最成功的就是美国PULSETHEC公司的设备.采用这种方法,可以在给电池充电得时候,合理得控制充电脉冲得前沿,利用其高次谐波成分与大得硫酸铅结晶谐振而溶解大硫酸铅结晶.另外就是在电池两端接入脉冲发生器,在电池电压没有过放电的时候,对电池不断地产生脉冲,其一可以具有溶解大硫酸铅的条件,其二是脉冲扰动,破坏了大硫酸铅继续生长的条件,在电池电压低于规定值的时候,自动停止工作,不会因为脉冲发生器消耗的电流使电池过放电.
另外的一个方法就是周期性的采用10%~20%的过充电的方法,可以还原电池的深层硫化,防止结晶继续生长.这是国际上在2000年以后开始流行的一种行之有效的方法,据资料介绍,可以延长深循环电池寿命达一倍以上.
对样车跟踪的数据证明,定期的对电池采取脉冲除硫化和微过充电消除硫化的方法是行之有效的方法.国内已经出现具有脉冲修复和过充电修复功能的充电器,采用这种充电器,可以非常有效的消除电池的硫化.
第四,抑制热失控的措施
对于胶体电池来说,就其特性来说,可以靠良好的氧循环特性缓解电池的失水,然而,改善了电池的氧循环也是一把双刃剑,其副作用就是氧循环产生的高热量非常容易形成热失控.而所有热失控仅仅是在充电过程中产生的,所以充电器的选择和定位更加重要.就我对胶体电池充电器的测试看,问题还不少.主要的问题是最高充电电压过高,这在夏季非常诱发热失控.就我看目前的胶体电池所选用的充电器还不能够根绝或者基本上避免胶体电池的热失控.
现在采取的方法有不少.其中一些方法和对其评价如下.
1、 降低充电的最高充电电压,提高恒压转浮充的电流.
这样的做法可以缓解热失控,但是充入电量下降,非常容易形成由于欠充电形成的硫化,导致电池容量下降.
2、 给充电增加定时器.
有2种增加定时器的方法,其一是开始充电以后,对充电进行定时,当按照电池可以充满电的时间,就关闭充电器.这样的做法是寄希望于在8~10小时定时以内,电池的热失控的热积累不至于使电池的塑料外壳达到玻璃点温度,也就是电池的外壳还没有升到软化的程度.如果对有热失控前兆并且充满电的电池再次充电,电池温升已经超过外壳玻璃点温度,这种方法也可以缓解,但是不能够避免.
其二,是在电池进入恒压状态以后开始计时,计时的时间比开始就计时的时间短,但是,这样的计时也最少需要4小时,对于完全充满电并且有热失控前兆的电池的温升也有超过外壳玻璃点温度的可能.
这2种方法可以大大缓解热失控电池带来的损失,但是,不能够从根本上避免.
3、 给电池增加负脉冲,降低极板温升.
不过,多数的负脉冲加的往往是仅仅具有降低负脉冲到来期间的充电电流的作用,没有对电池进行放电,
4、 在电气控制方法中,最好的方法就是采取通过逻辑控制,使在恒压充电以后,充电电流不能够反升.这就切断了热失控反馈的环路,停止了电流增加所带来的发热提高的过程.
第五,抑制电池落后的方法
即便电池经过严格的组配,但是众多的原因还会导致串连电池组的电池差异.诱发电池落后的部分原因是:
——电池自放电的差异;
——排气压力的差异;
——生意硫酸比重的差异;
——失水的差异;
——制造工艺的差别.
电池在发生容量差异以后还会扩大,导致加速容量下降.
解决电池落后的最好的方法是每组电池单独充电.这里需要注意的每组充电恒压值的差异.并联充电是消除这种差异的好方法.但是,并联充电给每只电池的充电电流会产生差异,所以充满电的时间会有差异.作为维修是比较好的,作为正常充电,还需要在电流分配上采取适当的措施.
当然,也可以采用小电流恒流充电,例如采用0.03C~0.05C电流充电,在这样小电流长时间的充电过程中,达到高电压的电池充入电量不多,副反应到是比较强烈,充电电压低的会逐步提升,这样电池容量逐步接近与平衡.
三、电池的修复
电池的修复虽然没有成为一个行业,但是电池修复工作一直是存在的.不少电池制造商对保用期以内的返退电池采取“修旧利旧”的发生,把通过维修的电池重新提供给用户,以提高电池的有效使用寿命,降低报废率,减少电池制造商的部分理索赔的损失.这些修复方法为:
1、 重新配组
电池返退以后,电池制造商重新进行充放电检验,在检验中往往会发现有50%以上的电池不符合返退条件的电池.其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降而引起整组返退.
2、 补水
鉴于部分电池制造商还是采用低锑合金的板栅,电池失水电平比较低,加上最高充电电压高于析氢电压,电池失水更加严重,形成了电池的第一位的失效原因.对此,一些电池制造商有意的改造了盖板,并且在排气阀下部设立了螺装结构,为打开电池形成了方便条件,这样,有电池制造商开展电池补水工作.对使用了半年的电池进行一次补水,可以延长电池的使用寿命,延长时间平均达到3个月以上.应该注意的是,每次补水以后,电池都利用处于过充电状态把电池由“准贫液”转为“贫液”状态,而这个过充电对提高电池容量是有好处的.
3、 消除硫化
采用专门的设备,对电池进行消除硫化的处理.这里主要有2种方法,其一就是高电压大电流脉冲充电,通过负阻击穿消除硫化.这种方法速度快,见效快,但是对电池的寿命影响比较大.另外的方法就是采用小电流频率高达8KHz以上,利用大结晶谐振的方法来溶解,这种方法修复比较慢,修复效果也比较好,但是,修复时间比较长,往往在120小时以上.实际测试数据表明,对于补水以后没有达到60%补充容量的电池进行除硫处理,还有约2/3的电池可以达到60%以上的容量,甚至还有35%以上的电池的容量可以达到80%以上的容量.
4、 采取类似保护器、延生器类的脉冲发生器并联在电池上,对电池进行脉冲维修.
这种方法对修复电池比较慢,但是由于长年在维修,所以,如果没有过放电,对于连续使用的电池来说,往往是彻底消除了电池硫化的可能性.
5、 综合修复方法
如果对电池采用定期检验,及时除硫和补水,单只电池充电、重新配组.采取这些做法以后,电池的平均寿命会大大提高.定期检修的意义比较大,不要等电池由于失水和硫化的影响,损伤正极板以后再修复.这样,可以大大延长电池的寿命.而一旦电池出现严重的失水和硫化以后,对正极板的损伤相对也比较大.所以,应该在对正极板损伤以前久对电池进行适当的维修.采取防患于未然的检修的方法比亡羊补牢的方法更加有效.
四、结语
采取综合措施,可以大大延长电池的的实际使用寿命.如果做到如下措施,电池的实际寿命可以获得延长一倍以上的结果.
1、 追求车的效率.
尽可能的使整车轻便化.据说,最轻便的车和最重的车,塑料件形成高达十多公斤.而这十多公斤的塑料件不仅仅是行车的累赘,也给用户塑料件日后维修带来非常大的麻烦.
适当限速,做好欠压保护,严防电池过放电.采用固化的控制器,杜绝控制器参数漂移的现象.采用好的助力方式,使输出与脚踏用力成正比,形成有效的智能化助力控制.
采用大轮径,细轮胎,提高电机的效率,使电机工作在相对比较高的工作效率状态.同时减少轮胎与地面的摩擦损失.
2、 采用长寿命的电池
逐步扭转以电池的初期容量来评价电池的趋势,以深循环寿命来评价电池.这样,带动电池向发展寿命方面改进.
3、 采用先进合理的充电器
这个充电器应该使电池最高充电电压低于大量析氢电压,最好在大量析氧电压和大量析氢电压之间.要达到这个目标,最好的方法还是采用大电流负脉冲充电.
采用适当的温度控制,解决夏季过充电冬季欠充电的问题.
合理的快速脉冲前沿,使其具有消除硫化的作用.
4、 完善的售后服务检修体系
对电池进行定期的检修,缓解和消除电池缺陷扩大化.
采取这些措施的效果是非常明显的.就平均每天续行25公里的多家样车跟踪看,电池的使用寿命基本上都超过二年.有的已经达到三年以上.
采取这些方法的意义很大.首先是给用户带来了实实在在的经济效益,减少了用户的麻烦.其次是提高了车厂的声誉,为拓展生产提供了条件.第三可以大大减少电池制造商的理索赔费用.第四,改善电动自行车的形象,拓展电动自行车整体市场的发展.第五,提高电池的利用率,有利于环保.
采取这些措施,不仅仅可以减少用户的使用费用,由于降低了大量塑料件的累赘,也可以降低新车的成本.而这个先机给国外留下了进入中国电动自行车市场巨大的空间.殷切企盼国人能够奋起直追,赶超国外的先进技术,屏弃低水平的重复竞争,开拓出电动自行车市场崭新的局面.是中国电动自行车不仅仅是在国内销售的产量第一,而且争取做到国际市场是也独占鳌头.
电动车电池保用2年不是梦
全部回复(93)
正序查看
倒序查看
现在还没有回复呢,说说你的想法
@abt-bj
我很想了解“胶体电池一片看好”的细节.
销售商:“你听,现在电机的声音明显大多了,随便跑三十码(公里每小时).”
记者:“有没有什么危险哦,没有事,这个刹车效果好.”
这些商家不仅提供调速的服务,对顾客的心理也掌握得十分到位.
销售商:“你上班啊,也不用愁比别人跑得慢了,见车超车.”
那么,是这些商家对国家的规定不了解吗?
销售商:“现在国家规定都是在二十码(公里每小时)以内,但是行内一般都是在三十码.”
这是我在央视网站上看的,电动自己车也“提速”.像这样,电池不坏才怪啊.所以东西不是说保就能保的了.不知你知不知道超威?应还可以吧.
记者:“有没有什么危险哦,没有事,这个刹车效果好.”
这些商家不仅提供调速的服务,对顾客的心理也掌握得十分到位.
销售商:“你上班啊,也不用愁比别人跑得慢了,见车超车.”
那么,是这些商家对国家的规定不了解吗?
销售商:“现在国家规定都是在二十码(公里每小时)以内,但是行内一般都是在三十码.”
这是我在央视网站上看的,电动自己车也“提速”.像这样,电池不坏才怪啊.所以东西不是说保就能保的了.不知你知不知道超威?应还可以吧.
0
回复
提示