英飞凌工业半导体
认证:优质创作者
所在专题目录 查看专题
IGBT7的短路能力及降额曲线
论文 | 如何理解并运用IGBT7 175℃的最高运行结温
论文 | EconoDUAL™ 3 IGBT7 900A 1200V 第一部分:芯片特性
论文 | EconoDUAL™ 3 IGBT7 900A 1200V 第二部分:热特性评估
论文|1200V IGBT7和Emcon7可控性更佳,助力提升变频器系统性能(上)
论文|1200V IGBT7和Emcon7可控性更佳,助力提升变频器系统性能(下)
作者动态 更多
功率器件热设计基础(四)——功率半导体芯片温度和测试方法
4天前
功率器件热设计基础(三)——功率半导体壳温和散热器温度定义和测试方法
2星期前
功率器件的热设计基础(二)——热阻的串联和并联
2星期前
功率器件热设计基础(一)——功率半导体的热阻
2星期前
PCIM2024论文摘要|主驱逆变器应用中不同 Zth 模型对分立 IGBT Tvj 计算的影响
09-27 09:33

论文 | 如何理解并运用IGBT7 175℃的最高运行结温

在典型变频器应用中,1.5倍过载是经常发生的工况。在这种工况下,器件的结温会出现较大幅度的波动。在以往的芯片技术中,最大允许工作结温固定为150℃。假设1.5倍过载工况下,器件结温较满载时结温高出25℃,则变频器满载功率只能按照芯片结温最高不超过125℃来定义,实际上是浪费了25℃的结温。而英飞凌最新一代TRENCHSTOP™ IGBT7技术允许在过载工况下运行在Tvjop=175℃。这样,变频器的满载功率就可以按照芯片结温最高不超过150℃来定义,最大程度地发挥了芯片的潜能。相比之前IGBT4的最高结温Tvjop =150℃,IGBT7能在更高的结温下运行,不仅能实现更高的功率密度,还支持更高的散热片温度。

1. 175℃运行结温的定义

图1显示了IGBT7在开关工况下允许的运行结温定义。正常运行时,最高允许结温为150°C。在过载工况下,允许最高结温高于Tvjop =150°C但低于Tvjop =175°C,最多持续t1 = 60秒。并且Tvjop高于150°C的过载工况持续时间必须在负载周期时间(T)的20%以内,即当T=300s时,t1 =60s。

负载周期的影响 

当负载周期小于300s时,例如T=200s,则t1=20%*200=40s。

当负载周期大于300s时,例如T=400s,则t1=60s。

图1 IGBT7和IGBT4的最高运行结温定义

图1中所示的最高温度定义应被视为最高结温(Tvjop)极限值,包括由基本输出频率引起的温度波动。图2提供了两个结温曲线的示例。在图2a中,周期时间T=300s,最高结温超过150℃的持续时间t1=50s。剩余时间内,结温都低于150°C。因此,占空比为16.7%。从最高运行结温的角度来看,这种工况是允许的。另一个示例如图2b所示。在本例中,最高结温在整个负载周期时间内都超过150°C。这种工况是不能允许的。

图2   a)允许工况             b)不允许工况

2. 达到更高IGBT运行温度所需满足的系统温度限制

2.1 外壳温度限制

相比IGBT4,TRENCHSTOP™ IGBT7的运行结温可提高25°C。这使得使用IGBT7的系统能够达到更高的功率密度,同时提高了周边元件的温度——比如PCB、散热片和模块外壳。实际应用中应当考虑到以下所述的几项限制。

2.2 外壳温度限制

数据表中规定有RTI(相对温度指数)值。该值代表与塑料热降解有关的特征参数。运行时,模块外壳温度不应超出此值。否则就是违反UL额定值标准。

2.2 PCB温度限制

系统的功率密度可随着结温的升高而提高。由于IGBT7和IGBT4 PIM模块所用的引脚相同,这意味着通过每个引脚的电流会变大。当该电流变大时,应特别注意PCB的温升。PCB所允许的最高温度取决于自身材料。增加铜层厚度、扩大走线宽度、增加层数及系统冷却可帮助降低PCB温度。

2.3 散热片温度限制

散热片温度不应超过热界面材料所允许的工作温度。如果模块已使用英飞凌预涂热界面材料的TIM模块,则散热片温度限值为150°C。

声明:本内容为作者独立观点,不代表电子星球立场。未经允许不得转载。授权事宜与稿件投诉,请联系:editor@netbroad.com
觉得内容不错的朋友,别忘了一键三连哦!
赞 4
收藏 4
关注 518
成为作者 赚取收益
全部留言
0/200
成为第一个和作者交流的人吧